插入符号中的特征选择+与ROC的总和

时间:2014-01-13 10:20:37

标签: r svm r-caret auc rfe

我一直在尝试使用插入符号包来应用递归功能选择。我需要的是ref使用AUC作为性能测量。谷歌搜索了一个月后,我无法使该过程正常工作。这是我使用的代码:

library(caret)
library(doMC)
registerDoMC(cores = 4)

data(mdrr)

subsets <- c(1:10)

ctrl <- rfeControl(functions=caretFuncs, 
                   method = "cv",
                   repeats =5, number = 10,
                   returnResamp="final", verbose = TRUE)

trainctrl <- trainControl(classProbs= TRUE)

caretFuncs$summary <- twoClassSummary

set.seed(326)

rf.profileROC.Radial <- rfe(mdrrDescr, mdrrClass, sizes=subsets,
                            rfeControl=ctrl,
                            method="svmRadial",
                            metric="ROC",
                            trControl=trainctrl)

执行此脚本时,我得到以下结果:

Recursive feature selection

Outer resampling method: Cross-Validation (10 fold) 

Resampling performance over subset size:

Variables Accuracy  Kappa AccuracySD KappaSD Selected
     1   0.7501 0.4796    0.04324 0.09491         
     2   0.7671 0.5168    0.05274 0.11037         
     3   0.7671 0.5167    0.04294 0.09043         
     4   0.7728 0.5289    0.04439 0.09290         
     5   0.8012 0.5856    0.04144 0.08798         
     6   0.8049 0.5926    0.02871 0.06133         
     7   0.8049 0.5925    0.03458 0.07450         
     8   0.8124 0.6090    0.03444 0.07361         
     9   0.8181 0.6204    0.03135 0.06758        *
    10   0.8069 0.5971    0.04234 0.09166         
   342   0.8106 0.6042    0.04701 0.10326         

The top 5 variables (out of 9):
nC, X3v, Sp, X2v, X1v

该过程始终使用Accuracy作为性能测量。出现的另一个问题是,当我尝试从使用以下方法获得的模型中获得预测时:

predictions <- predict(rf.profileROC.Radial$fit,mdrrDescr)

我收到以下消息

In predictionFunction(method, modelFit, tempX, custom = models[[i]]$control$custom$prediction) :
  kernlab class prediction calculations failed; returning NAs

从模型中得到一些预测是不可能的。

以下是通过sessionInfo()

获取的信息
R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
 [1] LC_CTYPE=es_ES.UTF-8       LC_NUMERIC=C               LC_TIME=es_ES.UTF-8       
 [4] LC_COLLATE=es_ES.UTF-8     LC_MONETARY=es_ES.UTF-8    LC_MESSAGES=es_ES.UTF-8   
 [7] LC_PAPER=es_ES.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
 [10] LC_TELEPHONE=C             LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      parallel  splines   stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] e1071_1.6-2     class_7.3-9     pROC_1.6.0.1    doMC_1.3.2      iterators_1.0.6 foreach_1.4.1  
 [7] caret_6.0-21    ggplot2_0.9.3.1 lattice_0.20-24 kernlab_0.9-19 

loaded via a namespace (and not attached):
 [1] car_2.0-19         codetools_0.2-8    colorspace_1.2-4   compiler_3.0.2     dichromat_2.0-0   
 [6] digest_0.6.4       gtable_0.1.2       labeling_0.2       MASS_7.3-29        munsell_0.4.2     
 [11] nnet_7.3-7         plyr_1.8           proto_0.3-10       RColorBrewer_1.0-5 Rcpp_0.10.6       
 [16] reshape2_1.2.2     scales_0.2.3       stringr_0.6.2      tools_3.0.2       

1 个答案:

答案 0 :(得分:6)

一个问题是一个小错字('trControl='而不是'trainControl=')。此外,在将caretFuncs附加到rfe的控制功能后,您也会更改trainControl。最后,您需要告诉 caretFuncs$summary <- twoClassSummary ctrl <- rfeControl(functions=caretFuncs, method = "cv", repeats =5, number = 10, returnResamp="final", verbose = TRUE) trainctrl <- trainControl(classProbs= TRUE, summaryFunction = twoClassSummary) rf.profileROC.Radial <- rfe(mdrrDescr, mdrrClass, sizes=subsets, rfeControl=ctrl, method="svmRadial", ## I also added this line to ## avoid a warning: metric = "ROC", trControl = trainctrl) > rf.profileROC.Radial Recursive feature selection Outer resampling method: Cross-Validated (10 fold) Resampling performance over subset size: Variables ROC Sens Spec ROCSD SensSD SpecSD Selected 1 0.7805 0.8356 0.6304 0.08139 0.10347 0.10093 2 0.8340 0.8491 0.6609 0.06955 0.10564 0.09787 3 0.8412 0.8491 0.6565 0.07222 0.10564 0.09039 4 0.8465 0.8491 0.6609 0.06581 0.09584 0.10207 5 0.8502 0.8624 0.6652 0.05844 0.08536 0.09404 6 0.8684 0.8923 0.7043 0.06222 0.06893 0.09999 7 0.8642 0.8691 0.6913 0.05655 0.10837 0.06626 8 0.8697 0.8823 0.7043 0.05411 0.08276 0.07333 9 0.8792 0.8753 0.7348 0.05414 0.08933 0.07232 * 10 0.8622 0.8826 0.6696 0.07457 0.08810 0.16550 342 0.8650 0.8926 0.6870 0.07392 0.08140 0.17367 The top 5 variables (out of 9): nC, X3v, Sp, X2v, X1v 计算ROC曲线。

此代码有效:

rf.profileROC.Radial

对于预测问题,您应该使用fit而不是 > predict(rf.profileROC.Radial, head(mdrrDescr)) pred Active Inactive 1 Inactive 0.4392768 0.5607232 2 Active 0.6553482 0.3446518 3 Active 0.6387261 0.3612739 4 Inactive 0.3060582 0.6939418 5 Active 0.6661557 0.3338443 6 Active 0.7513180 0.2486820 组件:

{{1}}

最高