我有Prim Algo的MST实现,即| V |对权力3。但CLRS表示,假设| V |,复杂度为O(E * lg | V |) 〜| E |它的O(| V | * lg | V |)。我的实施可能是固定的,但我不确定我们怎么能低于| V | * | V |使用矩阵实现
class matrix_graph
{
private:
int** v;
int vertexes;
public:
matrix_graph(int**, int);
~matrix_graph(void);
bool is_connected(int i,int j);
int egde_weight(int i,int j){return v[i][j];}
};
int mst()
{
int v[9][9] = {
{0,4,0,0,0,0,0,0,8},
{0,0,8,0,0,0,0,0,11},
{0,8,0,7,0,4,0,2,0},
{0,0,7,0,9,14,0,0,0},
{0,0,0,9,0,10,0,0,0},
{0,0,4,14,10,0,2,0,0},
{0,0,0,0,0,2,0,6,1},
{0,0,2,0,0,0,6,0,7},
{8,11,0,0,0,0,1,7,0}
};
int* ptr_v[9];
for(int i=0;i<9;i++){
ptr_v[i] = & v[i][0];
}
matrix_graph* m = new matrix_graph(ptr_v , 9 );
std::set<int> tree;
tree.insert(0);
std::set<int> non_tree;
non_tree.insert(1);
non_tree.insert(2);
non_tree.insert(3);
non_tree.insert(4);
non_tree.insert(5);
non_tree.insert(6);
non_tree.insert(7);
non_tree.insert(8);
int i = 0;
int min = _I32_MAX;
int add_to_tree;
int sum = 0;
while(!non_tree.empty()){
for(std::set<int>::iterator iter = tree.begin() ; iter != tree.end() ; iter++ ){
for(std::set<int>::iterator iter_n = non_tree.begin() ; iter_n != non_tree.end() ; iter_n++){
int edge = m->egde_weight(*iter , *iter_n);
if( edge > 0 && edge < min)
{
min = edge;
add_to_tree = *iter_n;
}
}
}
tree.insert(add_to_tree);
non_tree.erase(add_to_tree);
sum += min;
min = _I32_MAX;
}
return sum;
}
答案 0 :(得分:4)
您需要使用Adjacency list(而不是Adjacency Matrix)来表示图形。然后你的实现可以给出O(E * lg | V |)。
如果您还想进一步优化运行时间,可以使用Fibonacci堆来提取最小值。然后你可以实现O(| E | + V * lg | V |)运行时间。使用Fibonacci堆,您可以在运行的摊销O(lg n)中查找和删除元素。
更多详情:
http://en.wikipedia.org/wiki/Fibonacci_heap
斐波那契堆也在CLRS Book中讨论过。