时间卷积与频率倍增

时间:2013-06-23 09:00:30

标签: matlab filter signal-processing convolution

我正在尝试获得某个频段的功率,但我想在时域中而不是在频域中执行此操作。问题 - 乐队非常紧张,因此使用简单的过滤器会产生重叠的“尾巴”。

设[a1 a2] Hz是我想要计算功率的频段。我可以想象我将频域乘以矩形信号,因此我可以及时得到它,所以我可以及时进行卷积。

代码是:(matlab) 对于x - 时间信号,X = fft(x),W - 频率窗口,w = ifft(W)

filteredX=X.*W;
Fx=ifft(filteredX);
Fx2=conv(x,w,'same');

信号的结果不同。 虽然滤波后的X显示正确的频谱,但Fx2的fft(卷积的结果)完全不同。

有什么建议吗?

修改

正如EitanT所建议的那样(谢谢),我使用了以下代码:

im = fix(255 * rand(500,1)); 
mask = ones(4,1) / 16; 

% # Circular convolution
resConv = conv(im, mask);

% # Discrete Fourier transform
M = size(im, 1) + size(mask, 1);
resIFFT = ifft(fft(im, M) .* fft(mask, M));
% # Not needed any more - resIFFT = resIFFT(1:end-1);  % # Adjust dimensions

% # Check the difference
max(abs(resConv(:) - resIFFT(:)))

哪个工作正常,但我不能使用它所以我不得不更改与尺寸问题有关的部分并获得以下(请参阅注释):

 im = fix(255 * rand(500,1)); 
mask = ones(4,1) / 16; 

% # Circular convolution
resConv = conv(im, mask,'same'); % # instead of conv(im, mask)

% # Discrete Fourier transform
M = size(im, 1) % # Instead of: M = size(im, 1) + size(mask, 1);
resIFFT = ifft(fft(im, M) .* fft(mask, M));
resIFFT = resIFFT(1:end-1);  % # Adjust dimensions

% # Check the difference
max(abs(resConv(:) - resIFFT(:)))

如果我希望得到相同的结果,现在差异要大得多。

2 个答案:

答案 0 :(得分:2)

Eitan早期的verification of the convolution定理非常出色。在这里,我想演示用于过滤特定频段的时域卷积,并表明它等效于频域乘法。

除了知道如何运行fftifft函数之外,还需要两个部分来完成这项工作:

  1. 确定fft函数
  2. 返回的每个傅立叶分量的频率(Hz)
  3. fft之前填充信号,并在ifft之后或conv功能之后进行裁剪。
  4. 下面的代码生成随机信号,执行时域和频域过滤,并在图中显示如下的等价:

    enter image description here

    Nsamp = 50;  %number of samples from signal X
    X = randn(Nsamp,1);  %random Gaussian signal
    fs = 1000;     %sampling frequency
    
    NFFT = 2*Nsamp;  %number of samples to be used in fft (this will lead to padding)
    
    bandlow = 250;  %lower end of filter band (just an example range)
    bandhigh = 450; %upper end of filter band
    
    %construct a frequency axis so we know where Fourier components are
    
    if mod(NFFT,2) == 0 %if there is an even number of points in the FFT
        iNyq = NFFT/2;     %index to the highest frequency
        posfqs = fs*(0:iNyq)/NFFT;  %positive frequencies
        negfqs = -posfqs(end-1:-1:2);  %negative frequencies
    
    else  %if there is an odd number of point in the FFT
        iNyq = floor(NFFT/2);     %index to the highest frequency
        posfqs = fs*(0:iNyq)/NFFT;  %positive frequencies
        negfqs = -posfqs(end:-1:2);  %negative frequencies
    end
    
    fqs = [posfqs'; negfqs'];   %concatenate the positive and negative freqs
    
    fftX = fft(X,NFFT);  % compute the NFFT-point discrete Fourier transform of X
                         % becuse NFFT > Nsamp, X is zero-padded
    
    % construct frequency-space mask for the desired frequency range
    W = ones(size(fftX)) .* ( and ( abs(fqs) >=  bandlow, abs(fqs) < bandhigh) );
    
    fftX_filtered = fftX.*W; %multiplication in frequency space
    X_mult_filtered = ifft( fftX_filtered, NFFT);  %convert the multiplicatively-filtered signal to time domain
    
    w = ifft(W,NFFT); %convert the filter to the time domain
    X_conv_filtered = conv(X, w); %convolve with filter in time domain
    
    %now plot and compare the frequency and time domain results
    figure; set(gcf, 'Units', 'normalized', 'Position', [0.45 0.15 0.4 0.7])
    
    subplot(3,1,1); 
    plot(X)
    xlabel('Time Samples'); ylabel('Values of X'); title('Original Signal')
    
    subplot(3,1,2); 
    plot(X_conv_filtered(1:Nsamp))
    xlabel('Time Samples'); ylabel('Values of Filtered X'); title('Filtered by Convolution in Time Domain')
    
    subplot(3,1,3); 
    plot(X_mult_filtered(1:Nsamp))
    xlabel('Time Samples'); ylabel('Values of Filtered X'); title('Filtered by Multiplication in Frequency Domain')
    
    for sp = 1:3; subplot(3,1,sp); axis([0 Nsamp -3 3]); end
    

答案 1 :(得分:-1)

这是一个很好的例子: https://www.youtube.com/watch?v=iUafo2UZowE

编辑:

不要忘记填充。对于1d信号,它是这样的:

lh=length(h);
lx=length(x);

h=[h zeros(1,lx-1)];
x=[x zeros(1,lh-1)];

其余的很简单:

H=fft(h);
X=fft(x);

Y=H.*X;

y=ifft(Y);

stem(y)

如果您想绘制响应与时间的关系:

假设nh和nx是h和x样本的对应时间,那么响应样本的相应时间可以这样计算:

n=min(nh)+min(nx):+max(nh)+max(nx);

最后

stem(n,y)