我有一个模块A,它通过获取数据并将其发送到模块B,C,D等进行分析然后将它们的结果连接在一起来执行基本map / reduce。
但似乎模块B,C,D等本身不能创建多处理池,否则我得到
AssertionError: daemonic processes are not allowed to have children
是否有可能以其他方式并行化这些工作?
为了清楚起见,这里是一个(通常是坏的)婴儿的例子。 (我通常会尝试/捕捉,但你得到了要点。)
A.py:
import B
from multiprocessing import Pool
def main():
p = Pool()
results = p.map(B.foo,range(10))
p.close()
p.join()
return results
B.py:
from multiprocessing import Pool
def foo(x):
p = Pool()
results = p.map(str,x)
p.close()
p.join()
return results
答案 0 :(得分:21)
是否可以在游泳池内设置游泳池?
是的,除非你想提出an army of zombies,否则它可能不是一个好主意。来自Python Process Pool non-daemonic?:
import multiprocessing.pool
from contextlib import closing
from functools import partial
class NoDaemonProcess(multiprocessing.Process):
# make 'daemon' attribute always return False
def _get_daemon(self):
return False
def _set_daemon(self, value):
pass
daemon = property(_get_daemon, _set_daemon)
# We sub-class multiprocessing.pool.Pool instead of multiprocessing.Pool
# because the latter is only a wrapper function, not a proper class.
class Pool(multiprocessing.pool.Pool):
Process = NoDaemonProcess
def foo(x, depth=0):
if depth == 0:
return x
else:
with closing(Pool()) as p:
return p.map(partial(foo, depth=depth-1), range(x + 1))
if __name__ == "__main__":
from pprint import pprint
pprint(foo(10, depth=2))
[[0],
[0, 1],
[0, 1, 2],
[0, 1, 2, 3],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6, 7],
[0, 1, 2, 3, 4, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
concurrent.futures
默认支持它:
# $ pip install futures # on Python 2
from concurrent.futures import ProcessPoolExecutor as Pool
from functools import partial
def foo(x, depth=0):
if depth == 0:
return x
else:
with Pool() as p:
return list(p.map(partial(foo, depth=depth-1), range(x + 1)))
if __name__ == "__main__":
from pprint import pprint
pprint(foo(10, depth=2))
它产生相同的输出。
的方式是否有可能以其他方式并行化这些工作?