想要从蒙版数组中平滑轮廓

时间:2013-06-14 18:27:53

标签: matplotlib scipy contour

我有一个蒙面数组,matplotlib.plt.contourf使用该数组在冰雹地图上投射温度等值线。我试图平滑轮廓,但遗憾的是,所提出的解决方案似乎都无法处理蒙面阵列。我测试了这些解决方案:

- scipy.ndimage.gaussian_filter - moving averages

  • scipy.ndimage.zoom

它们都不起作用(它们也计入掩码值)。有什么方法可以在maskedArray上平滑我的轮廓


我在尝试提出的'inpaint'解决方案之后添加了这部分,结果没有改变。这是代码(如果它有帮助)

import Scientific.IO.NetCDF as S
import mpl_toolkits.basemap as bm
import numpy.ma as MA
import numpy as np
import matplotlib.pyplot as plt
import inpaint

def main():

    fileobj = S.NetCDFFile('Bias.ANN.tas_A1_1.nc', mode='r')

    # take the values
    set1 = {'time', 'lat', 'lon'}
    set2 = set(fileobj.variables.keys())
    set3 = set2 - set1
    datadim = set3.pop()
    print "******************datadim: "+datadim
    data = fileobj.variables[datadim].getValue()[0,:,:]


    lon = fileobj.variables['lon'].getValue()
    lat = fileobj.variables['lat'].getValue()
    fileobj.close()


    data, lon = bm.shiftgrid(180.,data, lon,start=False)
    data = MA.masked_equal(data, 1.0e20)
    #data2 = inpaint.replace_nans(data, 10, 0.25, 2, 'idw')
    #- Make 2-D longitude and latitude arrays:

    [lon2d, lat2d] =np.meshgrid(lon, lat)


    #- Set up map:

    mapproj = bm.Basemap(projection='cyl', 
                       llcrnrlat=-90.0, llcrnrlon=-180.00,
                       urcrnrlat=90.0, urcrnrlon=180.0)
    mapproj.drawcoastlines(linewidth=.5)
    mapproj.drawmapboundary(fill_color='.8')
    #mapproj.drawparallels(N.array([-90, -45, 0, 45, 90]), labels=[1,0,0,0])
    #mapproj.drawmeridians(N.array([0, 90, 180, 270, 360]), labels=[0,0,0,1])
    lonall, latall = mapproj(lon2d, lat2d)

    cmap=plt.cm.Spectral
    #- Make a contour plot of the temperature:
    mymapf = plt.contourf(lonall, latall, data, 20, cmap=cmap)
    #plt.clabel(mymapf, fontsize=12)
    plt.title(cmap.name)
    plt.colorbar(mymapf, orientation='horizontal')

    plt.savefig('sample2.png', dpi=150, edgecolor='red', format='png', bbox_inches='tight', pad_inches=.2)
    plt.close()
if __name__ == "__main__":
  main()

我将此代码的输出(第一个图)与来自Panoply的相同数据文件的输出进行比较。 Zoomin进入并且更精确地看起来似乎不是平滑问题,但是pyplot模型提供了一个条纹更细,或者轮廓被更早地切割(外部边界清楚地显示了这一点,并且由于这个事实,内部轮廓是不同的)。它使得看起来像pyplot模型不像Panoply那样平滑。我怎样才能得到(差不多)相同的型号?我区别对了吗?

the outcome from pyplo

the outcome from PanoPly

3 个答案:

答案 0 :(得分:4)

我有类似的问题,谷歌指出我:blog post。基本上他使用inpaint算法来插值缺失值并产生有效的数组用于过滤。

代码位于帖子的末尾,您可以将其保存到site-packages(或其他)并将其加载为模块(即inpaint.py):

import inpaint

filled = inpaint.replace_nans(NANMask, 5, 0.5, 2, 'idw')

我对结果感到满意,我猜它会很好地适应缺失的温度值。这里还有下一个版本:github但代码需要一些清洁才能用于一般用法,因为它是项目的一部分。

供参考,易于使用和保存我将在此处发布代码(初始版本):

# -*- coding: utf-8 -*-

"""A module for various utilities and helper functions"""

import numpy as np
#cimport numpy as np
#cimport cython

DTYPEf = np.float64
#ctypedef np.float64_t DTYPEf_t

DTYPEi = np.int32
#ctypedef np.int32_t DTYPEi_t

#@cython.boundscheck(False) # turn of bounds-checking for entire function
#@cython.wraparound(False) # turn of bounds-checking for entire function
def replace_nans(array, max_iter, tol,kernel_size=1,method='localmean'):
    """Replace NaN elements in an array using an iterative image inpainting algorithm.
The algorithm is the following:
1) For each element in the input array, replace it by a weighted average
of the neighbouring elements which are not NaN themselves. The weights depends
of the method type. If ``method=localmean`` weight are equal to 1/( (2*kernel_size+1)**2 -1 )
2) Several iterations are needed if there are adjacent NaN elements.
If this is the case, information is "spread" from the edges of the missing
regions iteratively, until the variation is below a certain threshold.
Parameters
----------
array : 2d np.ndarray
an array containing NaN elements that have to be replaced
max_iter : int
the number of iterations
kernel_size : int
the size of the kernel, default is 1
method : str
the method used to replace invalid values. Valid options are
`localmean`, 'idw'.
Returns
-------
filled : 2d np.ndarray
a copy of the input array, where NaN elements have been replaced.
"""

#    cdef int i, j, I, J, it, n, k, l
#    cdef int n_invalids

    filled = np.empty( [array.shape[0], array.shape[1]], dtype=DTYPEf)
    kernel = np.empty( (2*kernel_size+1, 2*kernel_size+1), dtype=DTYPEf )

#    cdef np.ndarray[np.int_t, ndim=1] inans
#    cdef np.ndarray[np.int_t, ndim=1] jnans

    # indices where array is NaN
    inans, jnans = np.nonzero( np.isnan(array) )

    # number of NaN elements
    n_nans = len(inans)

    # arrays which contain replaced values to check for convergence
    replaced_new = np.zeros( n_nans, dtype=DTYPEf)
    replaced_old = np.zeros( n_nans, dtype=DTYPEf)

    # depending on kernel type, fill kernel array
    if method == 'localmean':

        print 'kernel_size', kernel_size       
        for i in range(2*kernel_size+1):
            for j in range(2*kernel_size+1):
                kernel[i,j] = 1
        print kernel, 'kernel'

    elif method == 'idw':
        kernel = np.array([[0, 0.5, 0.5, 0.5,0],
                  [0.5,0.75,0.75,0.75,0.5], 
                  [0.5,0.75,1,0.75,0.5],
                  [0.5,0.75,0.75,0.5,1],
                  [0, 0.5, 0.5 ,0.5 ,0]])
        print kernel, 'kernel'      
    else:
        raise ValueError( 'method not valid. Should be one of `localmean`.')

    # fill new array with input elements
    for i in range(array.shape[0]):
        for j in range(array.shape[1]):
            filled[i,j] = array[i,j]

    # make several passes
    # until we reach convergence
    for it in range(max_iter):
        print 'iteration', it
        # for each NaN element
        for k in range(n_nans):
            i = inans[k]
            j = jnans[k]

            # initialize to zero
            filled[i,j] = 0.0
            n = 0

            # loop over the kernel
            for I in range(2*kernel_size+1):
                for J in range(2*kernel_size+1):

                    # if we are not out of the boundaries
                    if i+I-kernel_size < array.shape[0] and i+I-kernel_size >= 0:
                        if j+J-kernel_size < array.shape[1] and j+J-kernel_size >= 0:

                            # if the neighbour element is not NaN itself.
                            if filled[i+I-kernel_size, j+J-kernel_size] == filled[i+I-kernel_size, j+J-kernel_size] :

                                # do not sum itself
                                if I-kernel_size != 0 and J-kernel_size != 0:

                                    # convolve kernel with original array
                                    filled[i,j] = filled[i,j] + filled[i+I-kernel_size, j+J-kernel_size]*kernel[I, J]
                                    n = n + 1*kernel[I,J]

            # divide value by effective number of added elements
            if n != 0:
                filled[i,j] = filled[i,j] / n
                replaced_new[k] = filled[i,j]
            else:
                filled[i,j] = np.nan

        # check if mean square difference between values of replaced
        #elements is below a certain tolerance
        print 'tolerance', np.mean( (replaced_new-replaced_old)**2 )
        if np.mean( (replaced_new-replaced_old)**2 ) < tol:
            break
        else:
            for l in range(n_nans):
                replaced_old[l] = replaced_new[l]

    return filled


def sincinterp(image, x,  y, kernel_size=3 ):
    """Re-sample an image at intermediate positions between pixels.
This function uses a cardinal interpolation formula which limits
the loss of information in the resampling process. It uses a limited
number of neighbouring pixels.
The new image :math:`im^+` at fractional locations :math:`x` and :math:`y` is computed as:
.. math::
im^+(x,y) = \sum_{i=-\mathtt{kernel\_size}}^{i=\mathtt{kernel\_size}} \sum_{j=-\mathtt{kernel\_size}}^{j=\mathtt{kernel\_size}} \mathtt{image}(i,j) sin[\pi(i-\mathtt{x})] sin[\pi(j-\mathtt{y})] / \pi(i-\mathtt{x}) / \pi(j-\mathtt{y})
Parameters
----------
image : np.ndarray, dtype np.int32
the image array.
x : two dimensions np.ndarray of floats
an array containing fractional pixel row
positions at which to interpolate the image
y : two dimensions np.ndarray of floats
an array containing fractional pixel column
positions at which to interpolate the image
kernel_size : int
interpolation is performed over a ``(2*kernel_size+1)*(2*kernel_size+1)``
submatrix in the neighbourhood of each interpolation point.
Returns
-------
im : np.ndarray, dtype np.float64
the interpolated value of ``image`` at the points specified
by ``x`` and ``y``
"""

    # indices
#    cdef int i, j, I, J

    # the output array
    r = np.zeros( [x.shape[0], x.shape[1]], dtype=DTYPEf)

    # fast pi
    pi = 3.1419

    # for each point of the output array
    for I in range(x.shape[0]):
        for J in range(x.shape[1]):

            #loop over all neighbouring grid points
            for i in range( int(x[I,J])-kernel_size, int(x[I,J])+kernel_size+1 ):
                for j in range( int(y[I,J])-kernel_size, int(y[I,J])+kernel_size+1 ):
                    # check that we are in the boundaries
                    if i >= 0 and i <= image.shape[0] and j >= 0 and j <= image.shape[1]:
                        if (i-x[I,J]) == 0.0 and (j-y[I,J]) == 0.0:
                            r[I,J] = r[I,J] + image[i,j]
                        elif (i-x[I,J]) == 0.0:
                            r[I,J] = r[I,J] + image[i,j] * np.sin( pi*(j-y[I,J]) )/( pi*(j-y[I,J]) )
                        elif (j-y[I,J]) == 0.0:
                            r[I,J] = r[I,J] + image[i,j] * np.sin( pi*(i-x[I,J]) )/( pi*(i-x[I,J]) )
                        else:
                            r[I,J] = r[I,J] + image[i,j] * np.sin( pi*(i-x[I,J]) )*np.sin( pi*(j-y[I,J]) )/( pi*pi*(i-x[I,J])*(j-y[I,J]))
    return r


#cdef extern from "math.h":
 #   double sin(double)

答案 1 :(得分:3)

一个简单的平滑函数可以解决这个问题。然后可以避免涉及组成数据的方法(即插值,修复等);应始终避免编制数据。

平滑蒙版数据时出现的主要问题是,对于每个点,平滑使用相邻值来计算中心点的新值,但是当这些邻居被屏蔽时,中心点的新值也将变为由于蒙版数组的规则而被屏蔽。因此,需要使用未屏蔽的数据进行计算,并明确说明掩码。这很容易做到,而且不在下面的smooth函数中。

from numpy import *
import pylab as plt

#  make a grid and a striped mask as test data
N = 100
x = linspace(0, 5, N, endpoint=True)
grid = 2. + 1.*(sin(2*pi*x)[:,newaxis]*sin(2*pi*x)>0.)
m = resize((sin(pi*x)>0), (N,N))

plt.imshow(grid.copy(), cmap='jet', interpolation='nearest')
plt.colorbar()
plt.title('original data')


def smooth(u, mask):
    m = ~mask
    r = u*m  # set all 'masked' points to 0. so they aren't used in the smoothing
    a = 4*r[1:-1,1:-1] + r[2:,1:-1] + r[:-2,1:-1] + r[1:-1,2:] + r[1:-1,:-2]
    b = 4*m[1:-1,1:-1] + m[2:,1:-1] + m[:-2,1:-1] + m[1:-1,2:] + m[1:-1,:-2]  # a divisor that accounts for masked points
    b[b==0] = 1.  # for avoiding divide by 0 error (region is masked so value doesn't matter)
    u[1:-1,1:-1] = a/b

# run the data through the smoothing filter a few times
for i in range(10):   
    smooth(grid, m)

mg = ma.array(grid, mask=m)  # put together the mask and the data

plt.figure()
plt.imshow(mg, cmap='jet', interpolation='nearest')
plt.colorbar()
plt.title('smoothed with mask')

plt.show()

enter image description here enter image description here

重点是在掩模的边界处,掩模值不用于平滑。 (这也是网格方块切换值的位置,因此在图中可以清楚地看到是否使用了屏蔽的相邻值。)

答案 2 :(得分:0)

我们也遇到了这个问题,astropy 包已经解决了:

import numpy as np
import matplotlib.pyplot as plt

# Some Axes
x = np.arange(100)
y = np.arange(100)
#Some Interesting Shape
z = np.array(np.outer(np.sin((x+y)/10),np.sin(y/3)),dtype=float)

# some mask
mask = np.outer(np.sin((x+y)/20),np.sin(y/5))**2>.9

# masked data represent noise, so lets put in some trash into the masked points
z[mask] = (np.random.random(size = (100,100))*10)[mask]

# masked data
z_masked = np.ma.masked_array(z, mask)

# "Conventional" filter
filter_kernelsize = 2

import scipy.ndimage
z_filtered_bad = scipy.ndimage.gaussian_filter(z_masked,filter_kernelsize)

# Lets filter it
import astropy.convolution.convolve
from astropy.convolution import Gaussian2DKernel
k = Gaussian2DKernel(1.5)

z_filtered = astropy.convolution.convolve(z_masked, k, boundary='extend')

### Plots:
fig, axes = plt.subplots(2,2)
plt.sca(axes[0,0])
plt.title('Raw Data')
plt.imshow(z)
plt.colorbar()

plt.sca(axes[0,1])
plt.title('Raw Data Masked')
plt.imshow(z_masked)
plt.colorbar()

plt.sca(axes[1,0])
plt.title('ndimage filter (ignores mask)')
plt.imshow(z_filtered_bad)
plt.colorbar()

plt.sca(axes[1,1])
plt.title('astropy filter (uses mask)')
plt.imshow(z_filtered)
plt.colorbar()

plt.tight_layout()

Output plot of the code