所以我得到了Prim's-Algorithm的伪代码,
INPUT: GRAPH G = (V,E)
OUTPUT: Minimum spanning tree of G
Select arbitrary vertex s that exists within V
Construct an empty tree mst
Construct an empty priority queue Q that contain nodes ordered by their “distance” from mst
Insert s into Q with priority 0
while there exists a vertex v such that v exists in V and v does not exist in mst do
let v = Q.findMin()
Q.removeMin()
for vertex u that exists in neighbors(v) do
if v does not exist in mst then
if weight(u, v) < Q.getPriority(u) then
//TODO: What goes here?
end if
end if
end for
end while
return mst
// TODO
中的内容答案 0 :(得分:2)
TODO
Q.setPriority(u) = weight(u, v);
此外,您的队列不能正常工作。除s之外的节点的优先级应该初始化为∞。
作为伪代码,我在下面重写了它:
MST-PRIM(G,w,s)
for each u in G.V
u.priority = ∞
u.p = NULL //u's parent in MST
s.key = 0
Q = G.V // Q is a priority queue
while(Q!=∅)
u = EXTRACT-MIN(Q)
for each v in u's adjacent vertex
if v∈Q and w(u,v) < v.priority
v.p = u
v.priority = w(u,v)
您可以在“算法入门”的第23.2章中找到它的原型。