我想在python中编写代码来解决数独难题。你们对这个目的的好算法有什么想法吗?我在网上读了一个关于算法的地方,通过用所有可能的数字填充整个框来解决它,然后将已知值插入相应的框中。从已知值的行和列中删除已知值。如果你们知道更好的话算法比这个请帮我写一个。另外,我很困惑,我应该如何读取用户的已知值。通过控制台逐个输入值非常困难。除了使用gui之外,还有什么简单的方法吗?
答案 0 :(得分:21)
这是我在python中的数独求解器。它使用简单的回溯算法来解决难题。 为简单起见,不进行输入验证或花哨输出。这是解决问题的最低限度代码。
需要9X9网格部分填充数字。值为0的单元格表示未填充。
def findNextCellToFill(grid, i, j):
for x in range(i,9):
for y in range(j,9):
if grid[x][y] == 0:
return x,y
for x in range(0,9):
for y in range(0,9):
if grid[x][y] == 0:
return x,y
return -1,-1
def isValid(grid, i, j, e):
rowOk = all([e != grid[i][x] for x in range(9)])
if rowOk:
columnOk = all([e != grid[x][j] for x in range(9)])
if columnOk:
# finding the top left x,y co-ordinates of the section containing the i,j cell
secTopX, secTopY = 3 *(i//3), 3 *(j//3) #floored quotient should be used here.
for x in range(secTopX, secTopX+3):
for y in range(secTopY, secTopY+3):
if grid[x][y] == e:
return False
return True
return False
def solveSudoku(grid, i=0, j=0):
i,j = findNextCellToFill(grid, i, j)
if i == -1:
return True
for e in range(1,10):
if isValid(grid,i,j,e):
grid[i][j] = e
if solveSudoku(grid, i, j):
return True
# Undo the current cell for backtracking
grid[i][j] = 0
return False
>>> input = [[5,1,7,6,0,0,0,3,4],[2,8,9,0,0,4,0,0,0],[3,4,6,2,0,5,0,9,0],[6,0,2,0,0,0,0,1,0],[0,3,8,0,0,6,0,4,7],[0,0,0,0,0,0,0,0,0],[0,9,0,0,0,0,0,7,8],[7,0,3,4,0,0,5,6,0],[0,0,0,0,0,0,0,0,0]]
>>> solveSudoku(input)
True
>>> input
[[5, 1, 7, 6, 9, 8, 2, 3, 4], [2, 8, 9, 1, 3, 4, 7, 5, 6], [3, 4, 6, 2, 7, 5, 8, 9, 1], [6, 7, 2, 8, 4, 9, 3, 1, 5], [1, 3, 8, 5, 2, 6, 9, 4, 7], [9, 5, 4, 7, 1, 3, 6, 8, 2], [4, 9, 5, 3, 6, 2, 1, 7, 8], [7, 2, 3, 4, 8, 1, 5, 6, 9], [8, 6, 1, 9, 5, 7, 4, 2, 3]]
答案 1 :(得分:5)
基于hari的答案,这是一个更快的解决方案。基本区别在于我们为没有分配值的单元格保留一组可能的值。因此,当我们尝试一个新值时,我们只尝试有效值,并且我们还传播了这个选择对其余数据的意义。在传播步骤中,我们从每个单元格的有效值集合中删除已经出现在行,列或同一块中的值。如果集合中只剩下一个数字,我们就知道位置(单元格)必须具有该值。
此方法称为前向检查并向前看(http://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html)。
下面的实现需要一次迭代(求解的调用),而hari的实现需要487.当然我的代码有点长。传播方法也不是最优的。
import sys
from copy import deepcopy
def output(a):
sys.stdout.write(str(a))
N = 9
field = [[5,1,7,6,0,0,0,3,4],
[2,8,9,0,0,4,0,0,0],
[3,4,6,2,0,5,0,9,0],
[6,0,2,0,0,0,0,1,0],
[0,3,8,0,0,6,0,4,7],
[0,0,0,0,0,0,0,0,0],
[0,9,0,0,0,0,0,7,8],
[7,0,3,4,0,0,5,6,0],
[0,0,0,0,0,0,0,0,0]]
def print_field(field):
if not field:
output("No solution")
return
for i in range(N):
for j in range(N):
cell = field[i][j]
if cell == 0 or isinstance(cell, set):
output('.')
else:
output(cell)
if (j + 1) % 3 == 0 and j < 8:
output(' |')
if j != 8:
output(' ')
output('\n')
if (i + 1) % 3 == 0 and i < 8:
output("- - - + - - - + - - -\n")
def read(field):
""" Read field into state (replace 0 with set of possible values) """
state = deepcopy(field)
for i in range(N):
for j in range(N):
cell = state[i][j]
if cell == 0:
state[i][j] = set(range(1,10))
return state
state = read(field)
def done(state):
""" Are we done? """
for row in state:
for cell in row:
if isinstance(cell, set):
return False
return True
def propagate_step(state):
"""
Propagate one step.
@return: A two-tuple that says whether the configuration
is solvable and whether the propagation changed
the state.
"""
new_units = False
# propagate row rule
for i in range(N):
row = state[i]
values = set([x for x in row if not isinstance(x, set)])
for j in range(N):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
# propagate column rule
for j in range(N):
column = [state[x][j] for x in range(N)]
values = set([x for x in column if not isinstance(x, set)])
for i in range(N):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
# propagate cell rule
for x in range(3):
for y in range(3):
values = set()
for i in range(3 * x, 3 * x + 3):
for j in range(3 * y, 3 * y + 3):
cell = state[i][j]
if not isinstance(cell, set):
values.add(cell)
for i in range(3 * x, 3 * x + 3):
for j in range(3 * y, 3 * y + 3):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
return True, new_units
def propagate(state):
""" Propagate until we reach a fixpoint """
while True:
solvable, new_unit = propagate_step(state)
if not solvable:
return False
if not new_unit:
return True
def solve(state):
""" Solve sudoku """
solvable = propagate(state)
if not solvable:
return None
if done(state):
return state
for i in range(N):
for j in range(N):
cell = state[i][j]
if isinstance(cell, set):
for value in cell:
new_state = deepcopy(state)
new_state[i][j] = value
solved = solve(new_state)
if solved is not None:
return solved
return None
print_field(solve(state))
答案 2 :(得分:4)
我写了一个解决简单程序的简单程序。它从一个文件中输入,该文件只是一个带空格和数字的矩阵。解决它的数据结构只是位掩码的9乘9矩阵。位掩码将指定在某个位置上仍可能存在哪些数字。填写文件中的数字将减少每个已知位置旁边的所有行/列中的数字。完成后,您将继续迭代矩阵并减少可能的数字。如果每个位置只剩下一个选项,那么就完成了。但是有一些需要更多工作的sudokus。对于这些,您可以使用强力:尝试所有剩余的可能组合,直到找到有效的组合。
答案 3 :(得分:3)
我还在Python中编写了一个Sudoku解算器。它也是一种回溯算法,但我也希望分享我的实现。
回溯可以足够快,因为它在约束内移动并且明智地选择单元。您可能还想查看my answer in this thread about optimizing the algorithm。但在这里,我将重点关注算法和代码本身。
算法的要点是开始迭代网格并决定做什么 - 填充单元格,或尝试同一单元格的另一个数字,或者清空单元格并移回前一个单元格等。重要的是要注意,没有确定的方法可以知道解决这个难题需要多少步骤或迭代。因此,您确实有两个选项 - 使用while循环或使用递归。它们都可以继续迭代直到找到解决方案或者直到证明缺乏解决方案。递归的优点是它能够分支出来并且通常支持更复杂的逻辑和算法,但缺点是它更难实现并且通常难以调试。对于我的回溯实现,我使用了while循环,因为不需要分支,算法以单线程线性方式搜索。
逻辑是这样的:
True :(主要迭代)
True :(回溯迭代)
算法的一些功能:
它以相同的顺序记录所访问的单元格,以便它可以随时回溯
它记录每个单元格的选择记录,以便它不会对同一个单元格尝试相同的数字两次
单元格的可用选项始终位于数独约束(行,列和3x3象限)内
这个特定的实现有几种不同的方法来选择下一个单元格和下一个数字,具体取决于输入参数(more info in the optimization thread)
如果给出一个空白网格,那么它将生成一个有效的数独谜题(使用优化参数&#34; C&#34;以便每次都生成随机网格)
如果给出已解决的网格,它将识别它并打印消息
完整的代码是:
import random, math, time
class Sudoku:
def __init__( self, _g=[] ):
self._input_grid = [] # store a copy of the original input grid for later use
self.grid = [] # this is the main grid that will be iterated
for i in _g: # copy the nested lists by value, otherwise Python keeps the reference for the nested lists
self._input_grid.append( i[:] )
self.grid.append( i[:] )
self.empty_cells = set() # set of all currently empty cells (by index number from left to right, top to bottom)
self.empty_cells_initial = set() # this will be used to compare against the current set of empty cells in order to determine if all cells have been iterated
self.current_cell = None # used for iterating
self.current_choice = 0 # used for iterating
self.history = [] # list of visited cells for backtracking
self.choices = {} # dictionary of sets of currently available digits for each cell
self.nextCellWeights = {} # a dictionary that contains weights for all cells, used when making a choice of next cell
self.nextCellWeights_1 = lambda x: None # the first function that will be called to assign weights
self.nextCellWeights_2 = lambda x: None # the second function that will be called to assign weights
self.nextChoiceWeights = {} # a dictionary that contains weights for all choices, used when selecting the next choice
self.nextChoiceWeights_1 = lambda x: None # the first function that will be called to assign weights
self.nextChoiceWeights_2 = lambda x: None # the second function that will be called to assign weights
self.search_space = 1 # the number of possible combinations among the empty cells only, for information purpose only
self.iterations = 0 # number of main iterations, for information purpose only
self.iterations_backtrack = 0 # number of backtrack iterations, for information purpose only
self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } # store the number of times each digit is used in order to choose the ones that are least/most used, parameter "3" and "4"
self.centerWeights = {} # a dictionary of the distances for each cell from the center of the grid, calculated only once at the beginning
# populate centerWeights by using Pythagorean theorem
for id in range( 81 ):
row = id // 9
col = id % 9
self.centerWeights[ id ] = int( round( 100 * math.sqrt( (row-4)**2 + (col-4)**2 ) ) )
# for debugging purposes
def dump( self, _custom_text, _file_object ):
_custom_text += ", cell: {}, choice: {}, choices: {}, empty: {}, history: {}, grid: {}\n".format(
self.current_cell, self.current_choice, self.choices, self.empty_cells, self.history, self.grid )
_file_object.write( _custom_text )
# to be called before each solve of the grid
def reset( self ):
self.grid = []
for i in self._input_grid:
self.grid.append( i[:] )
self.empty_cells = set()
self.empty_cells_initial = set()
self.current_cell = None
self.current_choice = 0
self.history = []
self.choices = {}
self.nextCellWeights = {}
self.nextCellWeights_1 = lambda x: None
self.nextCellWeights_2 = lambda x: None
self.nextChoiceWeights = {}
self.nextChoiceWeights_1 = lambda x: None
self.nextChoiceWeights_2 = lambda x: None
self.search_space = 1
self.iterations = 0
self.iterations_backtrack = 0
self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
def validate( self ):
# validate all rows
for x in range(9):
digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for y in range(9):
digit_count[ self.grid[ x ][ y ] ] += 1
for i in digit_count:
if digit_count[ i ] != 1:
return False
# validate all columns
for x in range(9):
digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for y in range(9):
digit_count[ self.grid[ y ][ x ] ] += 1
for i in digit_count:
if digit_count[ i ] != 1:
return False
# validate all 3x3 quadrants
def validate_quadrant( _grid, from_row, to_row, from_col, to_col ):
digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for x in range( from_row, to_row + 1 ):
for y in range( from_col, to_col + 1 ):
digit_count[ _grid[ x ][ y ] ] += 1
for i in digit_count:
if digit_count[ i ] != 1:
return False
return True
for x in range( 0, 7, 3 ):
for y in range( 0, 7, 3 ):
if not validate_quadrant( self.grid, x, x+2, y, y+2 ):
return False
return True
def setCell( self, _id, _value ):
row = _id // 9
col = _id % 9
self.grid[ row ][ col ] = _value
def getCell( self, _id ):
row = _id // 9
col = _id % 9
return self.grid[ row ][ col ]
# returns a set of IDs of all blank cells that are related to the given one, related means from the same row, column or quadrant
def getRelatedBlankCells( self, _id ):
result = set()
row = _id // 9
col = _id % 9
for i in range( 9 ):
if self.grid[ row ][ i ] == 0: result.add( row * 9 + i )
for i in range( 9 ):
if self.grid[ i ][ col ] == 0: result.add( i * 9 + col )
for x in range( (row//3)*3, (row//3)*3 + 3 ):
for y in range( (col//3)*3, (col//3)*3 + 3 ):
if self.grid[ x ][ y ] == 0: result.add( x * 9 + y )
return set( result ) # return by value
# get the next cell to iterate
def getNextCell( self ):
self.nextCellWeights = {}
for id in self.empty_cells:
self.nextCellWeights[ id ] = 0
self.nextCellWeights_1( 1000 ) # these two functions will always be called, but behind them will be a different weight function depending on the optimization parameters provided
self.nextCellWeights_2( 1 )
return min( self.nextCellWeights, key = self.nextCellWeights.get )
def nextCellWeights_A( self, _factor ): # the first cell from left to right, from top to bottom
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += id * _factor
def nextCellWeights_B( self, _factor ): # the first cell from right to left, from bottom to top
self.nextCellWeights_A( _factor * -1 )
def nextCellWeights_C( self, _factor ): # a randomly chosen cell
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += random.randint( 0, 999 ) * _factor
def nextCellWeights_D( self, _factor ): # the closest cell to the center of the grid
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += self.centerWeights[ id ] * _factor
def nextCellWeights_E( self, _factor ): # the cell that currently has the fewest choices available
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += len( self.getChoices( id ) ) * _factor
def nextCellWeights_F( self, _factor ): # the cell that currently has the most choices available
self.nextCellWeights_E( _factor * -1 )
def nextCellWeights_G( self, _factor ): # the cell that has the fewest blank related cells
for id in self.nextCellWeights:
self.nextCellWeights[ id ] += len( self.getRelatedBlankCells( id ) ) * _factor
def nextCellWeights_H( self, _factor ): # the cell that has the most blank related cells
self.nextCellWeights_G( _factor * -1 )
def nextCellWeights_I( self, _factor ): # the cell that is closest to all filled cells
for id in self.nextCellWeights:
weight = 0
for check in range( 81 ):
if self.getCell( check ) != 0:
weight += math.sqrt( ( id//9 - check//9 )**2 + ( id%9 - check%9 )**2 )
def nextCellWeights_J( self, _factor ): # the cell that is furthest from all filled cells
self.nextCellWeights_I( _factor * -1 )
def nextCellWeights_K( self, _factor ): # the cell whose related blank cells have the fewest available choices
for id in self.nextCellWeights:
weight = 0
for id_blank in self.getRelatedBlankCells( id ):
weight += len( self.getChoices( id_blank ) )
self.nextCellWeights[ id ] += weight * _factor
def nextCellWeights_L( self, _factor ): # the cell whose related blank cells have the most available choices
self.nextCellWeights_K( _factor * -1 )
# for a given cell return a set of possible digits within the Sudoku restrictions
def getChoices( self, _id ):
available_choices = {1,2,3,4,5,6,7,8,9}
row = _id // 9
col = _id % 9
# exclude digits from the same row
for y in range( 0, 9 ):
if self.grid[ row ][ y ] in available_choices:
available_choices.remove( self.grid[ row ][ y ] )
# exclude digits from the same column
for x in range( 0, 9 ):
if self.grid[ x ][ col ] in available_choices:
available_choices.remove( self.grid[ x ][ col ] )
# exclude digits from the same quadrant
for x in range( (row//3)*3, (row//3)*3 + 3 ):
for y in range( (col//3)*3, (col//3)*3 + 3 ):
if self.grid[ x ][ y ] in available_choices:
available_choices.remove( self.grid[ x ][ y ] )
if len( available_choices ) == 0: return set()
else: return set( available_choices ) # return by value
def nextChoice( self ):
self.nextChoiceWeights = {}
for i in self.choices[ self.current_cell ]:
self.nextChoiceWeights[ i ] = 0
self.nextChoiceWeights_1( 1000 )
self.nextChoiceWeights_2( 1 )
self.current_choice = min( self.nextChoiceWeights, key = self.nextChoiceWeights.get )
self.setCell( self.current_cell, self.current_choice )
self.choices[ self.current_cell ].remove( self.current_choice )
def nextChoiceWeights_0( self, _factor ): # the lowest digit
for i in self.nextChoiceWeights:
self.nextChoiceWeights[ i ] += i * _factor
def nextChoiceWeights_1( self, _factor ): # the highest digit
self.nextChoiceWeights_0( _factor * -1 )
def nextChoiceWeights_2( self, _factor ): # a randomly chosen digit
for i in self.nextChoiceWeights:
self.nextChoiceWeights[ i ] += random.randint( 0, 999 ) * _factor
def nextChoiceWeights_3( self, _factor ): # heuristically, the least used digit across the board
self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
for id in range( 81 ):
if self.getCell( id ) != 0: self.digit_heuristic[ self.getCell( id ) ] += 1
for i in self.nextChoiceWeights:
self.nextChoiceWeights[ i ] += self.digit_heuristic[ i ] * _factor
def nextChoiceWeights_4( self, _factor ): # heuristically, the most used digit across the board
self.nextChoiceWeights_3( _factor * -1 )
def nextChoiceWeights_5( self, _factor ): # the digit that will cause related blank cells to have the least number of choices available
cell_choices = {}
for id in self.getRelatedBlankCells( self.current_cell ):
cell_choices[ id ] = self.getChoices( id )
for c in self.nextChoiceWeights:
weight = 0
for id in cell_choices:
weight += len( cell_choices[ id ] )
if c in cell_choices[ id ]: weight -= 1
self.nextChoiceWeights[ c ] += weight * _factor
def nextChoiceWeights_6( self, _factor ): # the digit that will cause related blank cells to have the most number of choices available
self.nextChoiceWeights_5( _factor * -1 )
def nextChoiceWeights_7( self, _factor ): # the digit that is the least common available choice among related blank cells
cell_choices = {}
for id in self.getRelatedBlankCells( self.current_cell ):
cell_choices[ id ] = self.getChoices( id )
for c in self.nextChoiceWeights:
weight = 0
for id in cell_choices:
if c in cell_choices[ id ]: weight += 1
self.nextChoiceWeights[ c ] += weight * _factor
def nextChoiceWeights_8( self, _factor ): # the digit that is the most common available choice among related blank cells
self.nextChoiceWeights_7( _factor * -1 )
def nextChoiceWeights_9( self, _factor ): # the digit that is the least common available choice across the board
cell_choices = {}
for id in range( 81 ):
if self.getCell( id ) == 0:
cell_choices[ id ] = self.getChoices( id )
for c in self.nextChoiceWeights:
weight = 0
for id in cell_choices:
if c in cell_choices[ id ]: weight += 1
self.nextChoiceWeights[ c ] += weight * _factor
def nextChoiceWeights_a( self, _factor ): # the digit that is the most common available choice across the board
self.nextChoiceWeights_9( _factor * -1 )
# the main function to be called
def solve( self, _nextCellMethod, _nextChoiceMethod, _start_time, _prefillSingleChoiceCells = False ):
s = self
s.reset()
# initialize optimization functions based on the optimization parameters provided
"""
A - the first cell from left to right, from top to bottom
B - the first cell from right to left, from bottom to top
C - a randomly chosen cell
D - the closest cell to the center of the grid
E - the cell that currently has the fewest choices available
F - the cell that currently has the most choices available
G - the cell that has the fewest blank related cells
H - the cell that has the most blank related cells
I - the cell that is closest to all filled cells
J - the cell that is furthest from all filled cells
K - the cell whose related blank cells have the fewest available choices
L - the cell whose related blank cells have the most available choices
"""
if _nextCellMethod[ 0 ] in "ABCDEFGHIJKLMN":
s.nextCellWeights_1 = getattr( s, "nextCellWeights_" + _nextCellMethod[0] )
elif _nextCellMethod[ 0 ] == " ":
s.nextCellWeights_1 = lambda x: None
else:
print( "(A) Incorrect optimization parameters provided" )
return False
if len( _nextCellMethod ) > 1:
if _nextCellMethod[ 1 ] in "ABCDEFGHIJKLMN":
s.nextCellWeights_2 = getattr( s, "nextCellWeights_" + _nextCellMethod[1] )
elif _nextCellMethod[ 1 ] == " ":
s.nextCellWeights_2 = lambda x: None
else:
print( "(B) Incorrect optimization parameters provided" )
return False
else:
s.nextCellWeights_2 = lambda x: None
# initialize optimization functions based on the optimization parameters provided
"""
0 - the lowest digit
1 - the highest digit
2 - a randomly chosen digit
3 - heuristically, the least used digit across the board
4 - heuristically, the most used digit across the board
5 - the digit that will cause related blank cells to have the least number of choices available
6 - the digit that will cause related blank cells to have the most number of choices available
7 - the digit that is the least common available choice among related blank cells
8 - the digit that is the most common available choice among related blank cells
9 - the digit that is the least common available choice across the board
a - the digit that is the most common available choice across the board
"""
if _nextChoiceMethod[ 0 ] in "0123456789a":
s.nextChoiceWeights_1 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[0] )
elif _nextChoiceMethod[ 0 ] == " ":
s.nextChoiceWeights_1 = lambda x: None
else:
print( "(C) Incorrect optimization parameters provided" )
return False
if len( _nextChoiceMethod ) > 1:
if _nextChoiceMethod[ 1 ] in "0123456789a":
s.nextChoiceWeights_2 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[1] )
elif _nextChoiceMethod[ 1 ] == " ":
s.nextChoiceWeights_2 = lambda x: None
else:
print( "(D) Incorrect optimization parameters provided" )
return False
else:
s.nextChoiceWeights_2 = lambda x: None
# fill in all cells that have single choices only, and keep doing it until there are no left, because as soon as one cell is filled this might bring the choices down to 1 for another cell
if _prefillSingleChoiceCells == True:
while True:
next = False
for id in range( 81 ):
if s.getCell( id ) == 0:
cell_choices = s.getChoices( id )
if len( cell_choices ) == 1:
c = cell_choices.pop()
s.setCell( id, c )
next = True
if not next: break
# initialize set of empty cells
for x in range( 0, 9, 1 ):
for y in range( 0, 9, 1 ):
if s.grid[ x ][ y ] == 0:
s.empty_cells.add( 9*x + y )
s.empty_cells_initial = set( s.empty_cells ) # copy by value
# calculate search space
for id in s.empty_cells:
s.search_space *= len( s.getChoices( id ) )
# initialize the iteration by choosing a first cell
if len( s.empty_cells ) < 1:
if s.validate():
print( "Sudoku provided is valid!" )
return True
else:
print( "Sudoku provided is not valid!" )
return False
else: s.current_cell = s.getNextCell()
s.choices[ s.current_cell ] = s.getChoices( s.current_cell )
if len( s.choices[ s.current_cell ] ) < 1:
print( "(C) Sudoku cannot be solved!" )
return False
# start iterating the grid
while True:
#if time.time() - _start_time > 2.5: return False # used when doing mass tests and don't want to wait hours for an inefficient optimization to complete
s.iterations += 1
# if all empty cells and all possible digits have been exhausted, then the Sudoku cannot be solved
if s.empty_cells == s.empty_cells_initial and len( s.choices[ s.current_cell ] ) < 1:
print( "(A) Sudoku cannot be solved!" )
return False
# if there are no empty cells, it's time to validate the Sudoku
if len( s.empty_cells ) < 1:
if s.validate():
print( "Sudoku has been solved! " )
print( "search space is {}".format( self.search_space ) )
print( "empty cells: {}, iterations: {}, backtrack iterations: {}".format( len( self.empty_cells_initial ), self.iterations, self.iterations_backtrack ) )
for i in range(9):
print( self.grid[i] )
return True
# if there are empty cells, then move to the next one
if len( s.empty_cells ) > 0:
s.current_cell = s.getNextCell() # get the next cell
s.history.append( s.current_cell ) # add the cell to history
s.empty_cells.remove( s.current_cell ) # remove the cell from the empty queue
s.choices[ s.current_cell ] = s.getChoices( s.current_cell ) # get possible choices for the chosen cell
if len( s.choices[ s.current_cell ] ) > 0: # if there is at least one available digit, then choose it and move to the next iteration, otherwise the iteration continues below with a backtrack
s.nextChoice()
continue
# if all empty cells have been iterated or there are no empty cells, and there are still some remaining choices, then try another choice
if len( s.choices[ s.current_cell ] ) > 0 and ( s.empty_cells == s.empty_cells_initial or len( s.empty_cells ) < 1 ):
s.nextChoice()
continue
# if none of the above, then we need to backtrack to a cell that was previously iterated
# first, restore the current cell...
s.history.remove( s.current_cell ) # ...by removing it from history
s.empty_cells.add( s.current_cell ) # ...adding back to the empty queue
del s.choices[ s.current_cell ] # ...scrapping all choices
s.current_choice = 0
s.setCell( s.current_cell, s.current_choice ) # ...and blanking out the cell
# ...and then, backtrack to a previous cell
while True:
s.iterations_backtrack += 1
if len( s.history ) < 1:
print( "(B) Sudoku cannot be solved!" )
return False
s.current_cell = s.history[ -1 ] # after getting the previous cell, do not recalculate all possible choices because we will lose the information about has been tried so far
if len( s.choices[ s.current_cell ] ) < 1: # backtrack until a cell is found that still has at least one unexplored choice...
s.history.remove( s.current_cell )
s.empty_cells.add( s.current_cell )
s.current_choice = 0
del s.choices[ s.current_cell ]
s.setCell( s.current_cell, s.current_choice )
continue
# ...and when such cell is found, iterate it
s.nextChoice()
break # and break out from the backtrack iteration but will return to the main iteration
根据本文http://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html使用世界上最难的数独的示例电话
hardest_sudoku = [
[8,0,0,0,0,0,0,0,0],
[0,0,3,6,0,0,0,0,0],
[0,7,0,0,9,0,2,0,0],
[0,5,0,0,0,7,0,0,0],
[0,0,0,0,4,5,7,0,0],
[0,0,0,1,0,0,0,3,0],
[0,0,1,0,0,0,0,6,8],
[0,0,8,5,0,0,0,1,0],
[0,9,0,0,0,0,4,0,0]]
mySudoku = Sudoku( hardest_sudoku )
start = time.time()
mySudoku.solve( "A", "0", time.time(), False )
print( "solved in {} seconds".format( time.time() - start ) )
示例输出是:
Sudoku has been solved!
search space is 9586591201964851200000000000000000000
empty cells: 60, iterations: 49559, backtrack iterations: 49498
[8, 1, 2, 7, 5, 3, 6, 4, 9]
[9, 4, 3, 6, 8, 2, 1, 7, 5]
[6, 7, 5, 4, 9, 1, 2, 8, 3]
[1, 5, 4, 2, 3, 7, 8, 9, 6]
[3, 6, 9, 8, 4, 5, 7, 2, 1]
[2, 8, 7, 1, 6, 9, 5, 3, 4]
[5, 2, 1, 9, 7, 4, 3, 6, 8]
[4, 3, 8, 5, 2, 6, 9, 1, 7]
[7, 9, 6, 3, 1, 8, 4, 5, 2]
solved in 1.1600663661956787 seconds
答案 4 :(得分:1)
我知道我迟到了,但这是我的版本:
board = [
[8, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 3, 6, 0, 0, 0, 0, 0],
[0, 7, 0, 0, 9, 0, 2, 0, 0],
[0, 5, 0, 0, 0, 7, 0, 0, 0],
[0, 0, 0, 0, 4, 5, 7, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 3, 0],
[0, 0, 1, 0, 0, 0, 0, 6, 8],
[0, 0, 8, 5, 0, 0, 0, 1, 0],
[0, 9, 0, 0, 0, 0, 4, 0, 0]
]
def solve(bo):
find = find_empty(bo)
if not find: # if find is None or False
return True
else:
row, col = find
for num in range(1, 10):
if valid(bo, num, (row, col)):
bo[row][col] = num
if solve(bo):
return True
bo[row][col] = 0
return False
def valid(bo, num, pos):
# Check row
for i in range(len(bo[0])):
if bo[pos[0]][i] == num and pos[1] != i:
return False
# Check column
for i in range(len(bo)):
if bo[i][pos[1]] == num and pos[0] != i:
return False
# Check box
box_x = pos[1] // 3
box_y = pos[0] // 3
for i in range(box_y*3, box_y*3 + 3):
for j in range(box_x*3, box_x*3 + 3):
if bo[i][j] == num and (i, j) != pos:
return False
return True
def print_board(bo):
for i in range(len(bo)):
if i % 3 == 0:
if i == 0:
print(" ┎─────────┰─────────┰─────────┒")
else:
print(" ┠─────────╂─────────╂─────────┨")
for j in range(len(bo[0])):
if j % 3 == 0:
print(" ┃ ", end=" ")
if j == 8:
print(bo[i][j], " ┃")
else:
print(bo[i][j], end=" ")
print(" ┖─────────┸─────────┸─────────┚")
def find_empty(bo):
for i in range(len(bo)):
for j in range(len(bo[0])):
if bo[i][j] == 0:
return i, j # row, column
return None
print_board(board)
print('\n--------------------------------------\n')
solve(board)
print_board(board)
它使用回溯。但不是我编码的,是Tech With Tim's。该列表包含世界上最难的数独,并且通过实现计时功能,时间为:
===========================
[Finished in 2.838 seconds]
===========================
但是有一个简单的数独难题,例如:
board = [
[7, 8, 0, 4, 0, 0, 1, 2, 0],
[6, 0, 0, 0, 7, 5, 0, 0, 9],
[0, 0, 0, 6, 0, 1, 0, 7, 8],
[0, 0, 7, 0, 4, 0, 2, 6, 0],
[0, 0, 1, 0, 5, 0, 9, 3, 0],
[9, 0, 4, 0, 6, 0, 0, 0, 5],
[0, 7, 0, 3, 0, 0, 0, 1, 2],
[1, 2, 0, 0, 0, 7, 4, 0, 0],
[0, 4, 9, 2, 0, 6, 0, 0, 7]
]
结果是:
===========================
[Finished in 0.011 seconds]
===========================
我可以说很快。
答案 5 :(得分:1)
解决数独难题有四个步骤:
如果仍然无法解决,请为下一个可能的值进行操作,然后递归运行。
import math
import sys
def is_solved(l):
for x, i in enumerate(l):
for y, j in enumerate(i):
if j == 0:
# Incomplete
return None
for p in range(9):
if p != x and j == l[p][y]:
# Error
print('horizontal issue detected!', (x, y))
return False
if p != y and j == l[x][p]:
# Error
print('vertical issue detected!', (x, y))
return False
i_n, j_n = get_box_start_coordinate(x, y)
for (i, j) in [(i, j) for p in range(i_n, i_n + 3) for q in range(j_n, j_n + 3)
if (p, q) != (x, y) and j == l[p][q]]:
# Error
print('box issue detected!', (x, y))
return False
# Solved
return True
def is_valid(l):
for x, i in enumerate(l):
for y, j in enumerate(i):
if j != 0:
for p in range(9):
if p != x and j == l[p][y]:
# Error
print('horizontal issue detected!', (x, y))
return False
if p != y and j == l[x][p]:
# Error
print('vertical issue detected!', (x, y))
return False
i_n, j_n = get_box_start_coordinate(x, y)
for (i, j) in [(i, j) for p in range(i_n, i_n + 3) for q in range(j_n, j_n + 3)
if (p, q) != (x, y) and j == l[p][q]]:
# Error
print('box issue detected!', (x, y))
return False
# Solved
return True
def get_box_start_coordinate(x, y):
return 3 * int(math.floor(x/3)), 3 * int(math.floor(y/3))
def get_horizontal(x, y, l):
return [l[x][i] for i in range(9) if l[x][i] > 0]
def get_vertical(x, y, l):
return [l[i][y] for i in range(9) if l[i][y] > 0]
def get_box(x, y, l):
existing = []
i_n, j_n = get_box_start_coordinate(x, y)
for (i, j) in [(i, j) for i in range(i_n, i_n + 3) for j in range(j_n, j_n + 3)]:
existing.append(l[i][j]) if l[i][j] > 0 else None
return existing
def detect_and_simplify_double_pairs(l, pl):
for (i, j) in [(i, j) for i in range(9) for j in range(9) if len(pl[i][j]) == 2]:
temp_pair = pl[i][j]
for p in (p for p in range(j+1, 9) if len(pl[i][p]) == 2 and len(set(pl[i][p]) & set(temp_pair)) == 2):
for q in (q for q in range(9) if q != j and q != p):
pl[i][q] = list(set(pl[i][q]) - set(temp_pair))
if len(pl[i][q]) == 1:
l[i][q] = pl[i][q].pop()
return True
for p in (p for p in range(i+1, 9) if len(pl[p][j]) == 2 and len(set(pl[p][j]) & set(temp_pair)) == 2):
for q in (q for q in range(9) if q != i and p != q):
pl[q][j] = list(set(pl[q][j]) - set(temp_pair))
if len(pl[q][j]) == 1:
l[q][j] = pl[q][j].pop()
return True
i_n, j_n = get_box_start_coordinate(i, j)
for (a, b) in [(a, b) for a in range(i_n, i_n+3) for b in range(j_n, j_n+3)
if (a, b) != (i, j) and len(pl[a][b]) == 2 and len(set(pl[a][b]) & set(temp_pair)) == 2]:
for (c, d) in [(c, d) for c in range(i_n, i_n+3) for d in range(j_n, j_n+3)
if (c, d) != (a, b) and (c, d) != (i, j)]:
pl[c][d] = list(set(pl[c][d]) - set(temp_pair))
if len(pl[c][d]) == 1:
l[c][d] = pl[c][d].pop()
return True
return False
def update_unique_horizontal(x, y, l, pl):
tl = pl[x][y]
for i in (i for i in range(9) if i != y):
tl = list(set(tl) - set(pl[x][i]))
if len(tl) == 1:
l[x][y] = tl.pop()
return True
return False
def update_unique_vertical(x, y, l, pl):
tl = pl[x][y]
for i in (i for i in range(9) if i != x):
tl = list(set(tl) - set(pl[i][y]))
if len(tl) == 1:
l[x][y] = tl.pop()
return True
return False
def update_unique_box(x, y, l, pl):
tl = pl[x][y]
i_n, j_n = get_box_start_coordinate(x, y)
for (i, j) in [(i, j) for i in range(i_n, i_n+3) for j in range(j_n, j_n+3) if (i, j) != (x, y)]:
tl = list(set(tl) - set(pl[i][j]))
if len(tl) == 1:
l[x][y] = tl.pop()
return True
return False
def find_and_place_possibles(l):
while True:
pl = populate_possibles(l)
if pl != False:
return pl
def populate_possibles(l):
pl = [[[]for j in i] for i in l]
for (i, j) in [(i, j) for i in range(9) for j in range(9) if l[i][j] == 0]:
p = list(set(range(1, 10)) - set(get_horizontal(i, j, l) +
get_vertical(i, j, l) + get_box(i, j, l)))
if len(p) == 1:
l[i][j] = p.pop()
return False
else:
pl[i][j] = p
return pl
def find_and_remove_uniques(l, pl):
for (i, j) in [(i, j) for i in range(9) for j in range(9) if l[i][j] == 0]:
if update_unique_horizontal(i, j, l, pl) == True:
return True
if update_unique_vertical(i, j, l, pl) == True:
return True
if update_unique_box(i, j, l, pl) == True:
return True
return False
def try_with_possibilities(l):
while True:
improv = False
pl = find_and_place_possibles(l)
if detect_and_simplify_double_pairs(
l, pl) == True:
continue
if find_and_remove_uniques(
l, pl) == True:
continue
if improv == False:
break
return pl
def get_first_conflict(pl):
for (x, y) in [(x, y) for x, i in enumerate(pl) for y, j in enumerate(i) if len(j) > 0]:
return (x, y)
def get_deep_copy(l):
new_list = [i[:] for i in l]
return new_list
def run_assumption(l, pl):
try:
c = get_first_conflict(pl)
fl = pl[c[0]
][c[1]]
# print('Assumption Index : ', c)
# print('Assumption List: ', fl)
except:
return False
for i in fl:
new_list = get_deep_copy(l)
new_list[c[0]][c[1]] = i
new_pl = try_with_possibilities(new_list)
is_done = is_solved(new_list)
if is_done == True:
l = new_list
return new_list
else:
new_list = run_assumption(new_list, new_pl)
if new_list != False and is_solved(new_list) == True:
return new_list
return False
if __name__ == "__main__":
l = [
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 8, 0, 0, 0, 0, 4, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 6, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[2, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]
]
# This puzzle copied from Hacked rank test case
if is_valid(l) == False:
print("Sorry! Invalid.")
sys.exit()
pl = try_with_possibilities(l)
is_done = is_solved(l)
if is_done == True:
for i in l:
print(i)
print("Solved!!!")
sys.exit()
print("Unable to solve by traditional ways")
print("Starting assumption based solving")
new_list = run_assumption(l, pl)
if new_list != False:
is_done = is_solved(new_list)
print('is solved ? - ', is_done)
for i in new_list:
print(i)
if is_done == True:
print("Solved!!! with assumptions.")
sys.exit()
print(l)
print("Sorry! No Solution. Need to fix the valid function :(")
sys.exit()
答案 6 :(得分:0)
不会写完整的代码,但很久以前我做了一个数独求解器。我发现它并不总能解决它(人们在报纸上做的事情是不完整的!),但现在想我知道该怎么做。
答案 7 :(得分:0)
使用回溯实现相同算法的简短尝试:
def solve(sudoku):
#using recursion and backtracking, here we go.
empties = [(i,j) for i in range(9) for j in range(9) if sudoku[i][j] == 0]
predict = lambda i, j: set(range(1,10))-set([sudoku[i][j]])-set([sudoku[y+range(1,10,3)[i//3]][x+range(1,10,3)[j//3]] for y in (-1,0,1) for x in (-1,0,1)])-set(sudoku[i])-set(list(zip(*sudoku))[j])
if len(empties)==0:return True
gap = next(iter(empties))
predictions = predict(*gap)
for i in predictions:
sudoku[gap[0]][gap[1]] = i
if solve(sudoku):return True
sudoku[gap[0]][gap[1]] = 0
return False
答案 8 :(得分:0)
您好,我写过一篇博文,内容是用Python从头开始编写数独求解器,目前写了一系列有关用Julia(另一种高级但较快速的语言)编写约束程序求解器的文章。 您可以从文件中读取数独问题,这似乎比gui或cli方法更方便。通常,我使用约束编程并使用所有不同/唯一的约束,但我自己编写了代码,而不是使用约束编程求解器。
如果有人感兴趣:
答案 9 :(得分:0)
使用google ortools-以下内容将生成虚拟的数独数组或将解决候选问题。该代码可能比要求的更为冗长,希望能得到您的反馈。
这个想法是要解决一个涉及约束编程的问题
此外,当尝试求解现有的数独时,我们对已经分配了值的变量添加了附加约束。
from ortools.constraint_solver import pywrapcp
import numpy as np
def sudoku_solver(candidate = None):
solver = pywrapcp.Solver("Sudoku")
variables = [solver.IntVar(1,9,f"x{i}") for i in range(81)]
if len(candidate)>0:
candidate = np.int64(candidate)
for i in range(81):
val = candidate[i]
if val !=0:
solver.Add(variables[i] == int(val))
def set_constraints():
for i in range(9):
# All columns should be different
q=[variables[j] for j in list(range(i,81,9))]
solver.Add(solver.AllDifferent(q))
#All rows should be different
q2=[variables[j] for j in list(range(i*9,(i+1)*9))]
solver.Add(solver.AllDifferent(q2))
#All values in the sub-matrix should be different
a = list(range(81))
sub_blocks = a[3*i:3*(i+9):9] + a[3*i+1:3*(i+9)+1:9] + a[3*i+2:3*(i+9)+2:9]
q3 = [variables[j] for j in sub_blocks]
solver.Add(solver.AllDifferent(q3))
set_constraints()
db = solver.Phase(variables, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MIN_VALUE)
solver.NewSearch(db)
results_store =[]
num_solutions =0
total_solutions = 5
while solver.NextSolution() and num_solutions<total_solutions:
results = [j.Value() for j in variables]
results_store.append(results)
num_solutions +=1
return results_store
candidate = np.array([0, 2, 0, 4, 5, 6, 0, 8, 0, 0, 5, 6, 7, 8, 9, 0, 0, 3, 7, 0, 9, 0,
2, 0, 4, 5, 6, 2, 0, 1, 5, 0, 4, 8, 9, 7, 5, 0, 4, 8, 0, 0, 0, 0,
0, 3, 1, 0, 6, 4, 5, 9, 7, 0, 0, 0, 5, 0, 7, 8, 3, 1, 2, 8, 0, 7,
0, 1, 0, 5, 0, 4, 9, 7, 8, 0, 3, 0, 0, 0, 5])
results_store = sudoku_solver(candidate)
答案 10 :(得分:0)
这是我前段时间用Tensorflow和mnist以及自动求解器做的一个项目。虽然求解器算法没有很好的文档:)