我找到两个数字的HCF的算法,显示r = a*aqr + b*bqr
形式的理由,只是部分有效,即使我很确定我输入了所有正确的公式 - 基本上,它可以并且会找到HCF,但我也试图提供Bezout引理的演示,所以我需要显示上述显示的理由。该计划:
# twonumbers.py
inp = 0
a = 0
b = 0
mul = 0
s = 1
r = 1
q = 0
res = 0
aqc = 1
bqc = 0
aqd = 0
bqd = 1
aqr = 0
bqr = 0
res = 0
temp = 0
fin_hcf = 0
fin_lcd = 0
seq = []
inp = input('Please enter the first number, "a":\n')
a = inp
inp = input('Please enter the second number, "b":\n')
b = inp
mul = a * b # Will come in handy later!
if a < b:
print 'As you have entered the first number as smaller than the second, the program will swap a and b before proceeding.'
temp = a
a = b
b = temp
else:
print 'As the inputted value a is larger than or equal to b, the program has not swapped the values a and b.'
print 'Thank you. The program will now compute the HCF and simultaneously demonstrate Bezout\'s Lemma.'
print `a`+' = ('+`aqc`+' x '+`a`+') + ('+`bqc`+' x '+`b`+').'
print `b`+' = ('+`aqd`+' x '+`a`+') + ('+`bqd`+' x '+`b`+').'
seq.append(a)
seq.append(b)
c = a
d = b
while r != 0:
if s != 1:
c = seq[s-1]
d = seq[s]
res = divmod(c,d)
q = res[0]
r = res[1]
aqr = aqc - (q * aqd)#These two lines are the main part of the justification
bqr = bqc - (q * aqd)#-/
print `r`+' = ('+`aqr`+' x '+`a`+') + ('+`bqr`+' x '+`b`+').'
aqd = aqr
bqd = bqr
aqc = aqd
bqc = bqd
s = s + 1
seq.append(r)
fin_hcf = seq[-2] # Finally, the HCF.
fin_lcd = mul / fin_hcf
print 'Using Euclid\'s Algorithm, we have now found the HCF of '+`a`+' and '+`b`+': it is '+`fin_hcf`+'.'
print 'We can now also find the LCD (LCM) of '+`a`+' and '+`b`+' using the following method:'
print `a`+' x '+`b`+' = '+`mul`+';'
print `mul`+' / '+`fin_hcf`+' (the HCF) = '+`fin_lcd`+'.'
print 'So, to conclude, the HCF of '+`a`+' and '+`b`+' is '+`fin_hcf`+' and the LCD (LCM) of '+`a`+' and '+`b`+' is '+`fin_lcd`+'.'
如果你能帮助我找出这个问题,我将不胜感激。
答案 0 :(得分:8)
inp
变量,然后将其复制到a
然后b
。并且您根本不使用seq
列表或s
变量。
无论如何,这不是问题。有两个错误。我认为如果你把印刷的中间答案与手工制作的例子进行比较,你应该找到问题。
第一个问题是你在第二行有一个拼写错误:
aqr = aqc - (q * aqd)#These two lines are the main part of the justification
bqr = bqc - (q * aqd)#-/
在第二行,aqd
应为bqd
第二个问题是在这段代码中
aqd = aqr
bqd = bqr
aqc = aqd
bqc = bqd
您将aqd
设为aqr
,然后aqc
设为aqd
。因此,aqc
和aqd
最终会相同。而您实际上想要以其他顺序进行分配:
aqc = aqd
bqc = bqd
aqd = aqr
bqd = bqr
然后代码有效。但我更愿意看到它写得更像这样,我认为更清楚。我遗漏了打印件,但我相信你可以把它们加回来:
a = input('Please enter the first number, "a":\n')
b = input('Please enter the second number, "b":\n')
if a < b:
a,b = b,a
r1,r2 = a,b
s1,s2 = 1,0
t1,t2 = 0,1
while r2 > 0:
q,r = divmod(r1,r2)
r1,r2 = r2,r
s1,s2 = s2,s1 - q * s2
t1,t2 = t2,t1 - q * t2
print r1,s1,t1
最后,我认为可能值得查看一个表达解决方案结构的递归版本。
希望这有帮助。
答案 1 :(得分:1)
以下是Bezout身份的简单版本;给定 a 和 b ,它返回 x , y 和 g = gcd ( a , b ):
function bezout(a, b)
if b == 0
return 1, 0, a
else
q, r := divide(a, b)
x, y, g := bezout(b, r)
return y, x - q * y, g
divide
函数返回商和余数。
答案 2 :(得分:0)
执行你想要的python程序(请注意,扩展的Euclid算法只提供一对Bezout系数)可能是:
import sys
def egcd(a, b):
if a == 0:
return (b, 0, 1)
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def main():
if len(sys.argv) != 3:
's program caluclates LCF, LCM and Bezout identity of two integers
usage %s a b''' % (sys.argv[0], sys.argv[0])
sys.exit(1)
a = int(sys.argv[1])
b = int(sys.argv[2])
g, x, y = egcd(a, b)
print 'HCF =', g
print 'LCM =', a*b/g
print 'Bezout identity: %i * (%i) + %i * (%i) = %i' % (a, x, b, y, g)
main()