我正在尝试用已知的y求解x值。我能够得到多项式来拟合我的数据,现在我想知道所选择的y将落在曲线上的x值。
import numpy as np
x = [50, 25, 12.5, 6.25, 0.625, 0.0625, 0.01]
y = [0.00, 0.50, 0.68, 0.77, 0.79, 0.90, 1.00]
poly_coeffs = np.polyfit(x, y, 3)
f = np.poly1d(poly_coeffs)
我想做0.5 = f并求解x值。
我可以通过键入:
在WolframAlpha中解决这个问题0.5 = -9.1e-6*x^3 + 5.9e-4*x^2 - 2.5e-2*x + 9.05e-1
实际x值为~26
答案 0 :(得分:5)
In [1]: from numpy.polynomial import Polynomial as P
In [2]: x = [50, 25, 12.5, 6.25, 0.625, 0.0625, 0.01]
In [3]: y = [0.00, 0.50, 0.68, 0.77, 0.79, 0.90, 1.00]
In [4]: p = P.fit(x, y, 3)
In [5]: (p - .5).roots()
Out[5]:
array([ 19.99806935-37.92449551j, 19.99806935+37.92449551j,
25.36882693 +0.j ])
看起来你想要的根是25.36882693。
答案 1 :(得分:4)
您可以使用np.roots
求解等式f(x) - y = 0
。考虑一下这个功能:
def solve_for_y(poly_coeffs, y):
pc = poly_coeffs.copy()
pc[-1] -= y
return np.roots(pc)
然后你可以用它来解决你想要的任何y
的多项式:
>>> print solve_for_y(poly_coeffs, 0.5)
[ 19.99806935+37.92449551j 19.99806935-37.92449551j 25.36882693 +0.j ]
>>> print solve_for_y(poly_coeffs, 1.)
[ 40.85615395+50.1936152j 40.85615395-50.1936152j -16.34734226 +0.j ]