我想绘制一个多面体,由以下不等式描述:
3*x+5*y+9*z<=500
4*x+5*z<=350
2*y+3*z<=150
x,y,z>=0
这是一个线性程序。目标函数是:
4*x+3*y+6*z
多面体是该计划的可行区域。 我可以将不等式绘制为平面,这应该描述多面体 (请注意,这是我第一次尝试使用rgl,所以代码有点混乱。如果你想改进它,请随意这样做):
# setup
x <- seq(0,9,length=20)*seq(0,9,length=20)
y <- x
t <- x
f1 <- function(x,y){y=70-0.8*x}
z1 <- outer(x,y,f1)
f2 <- function(x,y){500/9-x/3-(5*y)/9}
z2 <- outer(x,y,f2)
f3 <- function(x,y){t=50-(2*y)/3}
z3 <- outer(x,y,f3)
# plot planes with rgl
uM = matrix(c(0.72428817, 0.03278469, -0.68134511, 0,
-0.6786808, 0.0555667, -0.7267077, 0,
0.01567543, 0.99948466, 0.05903265, 0,
0, 0, 0, 1),
4, 4)
library(rgl)
open3d(userMatrix = uM, windowRect = c(0, 0, 400, 400))
rgl.pop("lights")
light3d(diffuse='white',theta=0,phi=20)
light3d(diffuse="gray10", specular="gray25")
rgl.light(theta = 0, phi = 0, viewpoint.rel = TRUE, ambient = "#FFFFFF",
diffuse = "#FFFFFF", specular = "#FFFFFF", x=30, y=30, z=40)
rgl.light(theta = 0, phi = 0, viewpoint.rel = TRUE, ambient = "#FFFFFF",
diffuse = "#FFFFFF", specular = "#FFFFFF", x=0, y=0, z=0)
bg3d("white")
material3d(col="white")
persp3d(x,y,z3,
xlim=c(0,100), ylim=c(0,100), zlim=c(0,100),
xlab='x', ylab='y', zlab='z',
col='lightblue',
ltheta=100, shade=0, ticktype = "simple")
surface3d(x, y, z2, col='orange', alpha=1)
surface3d(t, y, z1, col='pink', alpha=1, smooth=TRUE)
现在我想用
绘制飞机描述的区域x,y,z>=0.
但我不知道该怎么做。我试着这样做:
x <- seq(0,9,length=20)*seq(0,9,length=20)
y <- x
z <- x
f4 <- function(x,y,t){
cond1 <- 3*x+5*y+9*z<=500
cond2 <- 4*x+5*z<=350
cond3 <- 2*y+3*z<=150
ifelse(cond1, 3*x+5*y+9*z,
ifelse(cond2, 4*x+5*z,
ifelse(cond3, 2*y+3*z,0)))
}
f4(x,y,z)
z4 <- outer(x,y,z,f4) # ERROR
但这就是我被困的地方。 outer()仅为2个变量定义,但我有3个。我怎么能从这里继续前进?
答案 0 :(得分:6)
您可以通过一次交叉平面3来计算多面体的顶点 (由于其他不等式,一些交叉点在多面体之外: 你必须检查那些。)
获得顶点后,您可以尝试连接它们。 要识别边界上的哪些,您可以在段的中间, 并检查是否有任何不平等被视为平等。
# Write the inequalities as: planes %*% c(x,y,z,1) <= 0
planes <- matrix( c(
3, 5, 9, -500,
4, 0, 5, -350,
0, 2, 3, -150,
-1, 0, 0, 0,
0, -1, 0, 0,
0, 0, -1, 0
), nc = 4, byrow = TRUE )
# Compute the vertices
n <- nrow(planes)
vertices <- NULL
for( i in 1:n )
for( j in 1:n)
for( k in 1:n )
if( i < j && j < k ) try( {
# Intersection of the planes i, j, k
vertex <- solve(planes[c(i,j,k),-4], -planes[c(i,j,k),4] )
# Check that it is indeed in the polyhedron
if( all( planes %*% c(vertex,1) <= 1e-6 ) ) {
print(vertex)
vertices <- rbind( vertices, vertex )
}
} )
# For each pair of points, check if the segment is on the boundary, and draw it
library(rgl)
open3d()
m <- nrow(vertices)
for( i in 1:m )
for( j in 1:m )
if( i < j ) {
# Middle of the segment
p <- .5 * vertices[i,] + .5 * vertices[j,]
# Check if it is at the intersection of two planes
if( sum( abs( planes %*% c(p,1) ) < 1e-6 ) >= 2 )
segments3d(vertices[c(i,j),])
}