我的数据如下:
df <- structure(list(z = c(0, 0.06518, 0.08429, -0.01659, 0, 0.06808,
0.12383, -1, -0.01662, 0.28782, 0, -0.09539, 0.04255, 0.09539,
-0.13361, -0.28782, -0.14468, -0.19239, 0.10642), x = c(1, 0.02197,
0.03503, -0.02494, 0, 0.04138, 0.17992, 0, -0.02482, 0.1122,
0, 0.01511, 0.0011, -0.01511, -0.06699, -0.1122, -0.06876, 0.12078,
0.10201), y = c(0, 0.08735, 0.09927, 0.03876, -1, 0.22114, -0.00152,
0, 0.03811, -0.07335, 0, -0.03025, 0.07681, 0.03025, -0.23922,
0.07335, -0.25362, -0.09879, 0.05804), value = c(5801L, 135L,
162L, 109L, 4250L, 655L, 983L, 4500L, 108L, 1594L, 4400L, 540L,
147L, 323L, 899L, 1023L, 938L, 1627L, 327L)), .Names = c("z",
"x", "y", "value"), class = "data.frame", row.names = c(NA, -19L
))
每行代表一个形式的等式:z + x + y < value
。 x
是水平值,y
是垂直,z
是深度。 z可以被求解为:-x-y + value&gt; ž。
坐标系的极限是:
x <- z <- seq(-6000, 6000, by = 1)
y <- seq(-4000, 4000, by = 1)
所以,从每一行我想画一架飞机。然后我想组合所有这些平面,并填写行内的值。结果应该看起来像一个多面不等的骰子。或者是一颗难看的切割钻石。
我一直在使用rgl
和persp
功能,但我不确定从哪里开始。我对其他软件建议持开放态度。
借鉴persp3d
中的一个例子:
x <- seq(-6000, 6000, by = 1)
z <- x
y <- seq(-4000, 4000, by = 1)
f <- function(x, y) <- { r <- -x - y + value > z } # stuck here, can you handle an inequality here?
z <- outer(x, y, f)
open3d()
bg3d("white")
material3d(col = "black")
persp3d(x, y, z, col = "lightblue",
xlab = "X", ylab = "Y", zlab = "z")
我认识到这是一个非常大的限制。如果它有助于减少它们,感觉自由,或增加sequence(..., by = )
。
答案 0 :(得分:4)
通过利用一些矩阵乘法,你可以节省大量的计算时间。
library(dplyr)
library(geometry)
library(rgl)
# define point grid
r <- 50 # resolution
grid <- expand.grid(
x = seq(-6000, 6000, by = r),
y = seq(-4000, 4000, by = r),
z = seq(-6000, 6000, by = r)) # data.table::CJ(x,y,z) if speed is a factor
# get points satisfying every inequality
toPlot <- df %>%
select(x, y, z) %>%
data.matrix %>%
`%*%`(t(grid)) %>%
`<`(df$value) %>%
apply(2, all)
## Alternative way to get points (saves time avoiding apply)
toPlot2 <-
colSums(data.matrix(df[, c('x', 'y', 'z')]) %*% t(grid) < df$value) == nrow(df)
由于你不需要内部,所以将点减少到它们的凸包,然后绘制表面。
# get convex hull, print volume
gridPoints <- grid[toPlot, ]
hull <- convhulln(gridPoints, "FA")
hull$vol
#> 285767854167
# plot (option 1: colors as in picture)
apply(hull$hull, 1, function(i) gridPoints[i, ]) %>%
lapply(rgl.triangles, alpha = .8, color = gray.colors(5))
## plot (option 2: extract triangles first - much faster avoiding apply)
triangles <- gridPoints[c(t(hull$hull)), ]
rgl.triangles(triangles, alpha=0.8, color=gray.colors(3))
给这个奇怪的融化冰块这样的东西:
答案 1 :(得分:2)
您可以创建一个函数工厂,它接收不等式(df
)的data.frame,并返回一个函数:
厂:
eval_gen <- function(a,b,c,d){
force(a); force(b); force(c); force(d)
check <- function(x,y,z){
bool <- T
for (i in 1:length(a)){
bool <- bool && (a[i] * x + b[i] * y + c[i] * z < d[i])
}
return(bool)
}
}
然后我们加载不等式数据帧,创建函数:
ueq_test <- eval_gen(df$x,df$y,df$z,df$value) #load the inequalities
现在我们需要做的就是创建一个网格,如果所有不等式都成立,则着色:
library(data.table)
library(rgl)
#Note, you can change the resolution by changing the `by` argument here, I've set to 100 to keep computation time and object size manageable
lx <- lz <- seq(-6000, 6000, by = 100)
ly <- seq(-4000, 4000, by = 100)
df_pixels <- data.table(setNames(expand.grid(lx, ly, lz), c("x", "y", "z")))
df_pixels[, Ind := 1:.N]
df_pixels[, Equal := ueq_test(x,y,z), by = Ind]
df_pixels[Equal == T, colour := "red"]
绘制到rgl:
with(df_pixels[Equal == T, ], plot3d(x=x, y=y, z=z, col= colour, type="p", size=5,
xlim = c(-6000,6000),
ylim = c(-4000,4000),
zlim = c(-6000,6000)
))
给出了: