每个时间步更新ODE求解器的初始条件

时间:2013-05-13 10:40:28

标签: python numpy scipy integrate ode

我想要解决一个ODE系统,在前30,000秒,我希望我的一个状态变量从相同的初始值开始。在那30,000秒之后,我想将该状态变量的初始值更改为不同的值,并在剩余的时间内模拟系统。这是我的代码:

def ode_rhs(y, t):
    ydot[0] = -p[7]*y[0]*y[1] + p[8]*y[8] + p[9]*y[8]
    ydot[1] = -p[7]*y[0]*y[1] + p[8]*y[8]
    ydot[2] = -p[10]*y[2]*y[3] + p[11]*y[9] + p[12]*y[9]
    ydot[3] = -p[13]*y[3]*y[6] + p[14]*y[10] + p[15]*y[10] - p[10]*y[2]*y[3] + p[11]*y[9] + p[9]*y[8] - p[21]*y[3]
    ydot[4] = -p[19]*y[4]*y[5] - p[16]*y[4]*y[5] + p[17]*y[11] - p[23]*y[4] + y[7]*p[20]
    ydot[5] = -p[19]*y[4]*y[5] + p[15]*y[10] - p[16]*y[4]*y[5] + p[17]*y[11] + p[18]*y[11] + p[12]*y[9] - p[22]*y[5]
    ydot[6] = -p[13]*y[3]*y[6] + p[14]*y[10] - p[22]*y[6] - p[25]*y[6] - p[23]*y[6]
    ydot[7] = 0
    ydot[8] = p[7]*y[0]*y[1] - p[8]*y[8] - p[9]*y[8]
    ydot[9] = p[10]*y[2]*y[3] - p[11]*y[9] - p[12]*y[9] - p[21]*y[9]
    ydot[10] = p[13]*y[3]*y[6] - p[14]*y[10] - p[15]*y[10] - p[22]*y[10] - p[21]*y[10] - p[23]*y[10]
    ydot[11] = p[19]*y[4]*y[5] + p[16]*y[4]*y[5] - p[17]*y[11] - p[18]*y[11] - p[22]*y[11] - p[23]*y[11]
    ydot[12] = p[22]*y[10] + p[22]*y[11] + p[22]*y[5] + p[22]*y[6] + p[21]*y[10] + p[21]*y[3] + p[21]*y[9] + p[24]*y[13] + p[25]*y[6] + p[23]*y[10] + p[23]*y[11] + p[23]*y[4] + p[23]*y[6]
    ydot[13] = p[15]*y[10] + p[18]*y[11] - p[24]*y[13]
    return ydot

pysb.bng.generate_equations(model)
alias_model_components()
p = np.array([k.value for k in model.parameters])
ydot = np.zeros(len(model.odes))
y0 = np.zeros(len(model.odes))
y0[0:7] = p[0:7]
t = np.linspace(0.0,1000000.0,100000)
r = odeint(ode_rhs,y0,t)

因此,换句话说,我希望每次在前30,000秒调用odeint时将y0 [1]设置为相同的值(100)。在将信号输入系统之前,我有效地试图让系统平衡一段时间。我考虑过将if t < 30000: y0[1] = 100作为ode_rhs()函数的第一行,但我不太确定是否有效。

2 个答案:

答案 0 :(得分:4)

听起来你希望y1(t)保持不变(值为100) 平衡阶段。您可以通过在此期间确保dy1(t)/ dt = 0来实现此目的 相。有(至少)两种方法可以实现这一目标。首先是 修改ydot[1]ode_rhs的计算,如下所示:

if t < 30000:
    ydot[1] = 0.0
else:
    ydot[1] = -p[7]*y[0]*y[1] + p[8]*y[8]

并使用y[1]的初始条件100。

请注意,这会在系统的右侧引入不连续性, 但是odeint(Fortran代码LSODA)使用的自适应求解器通常足以处理它。

这是一个独立的例子。我已向p提出了t1ode_rhs个参数。 t1是平衡阶段的持续时间。

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt


def ode_rhs(y, t, p, t1):
    ydot[0] = -p[0]*y[0]*y[1] + p[1]*y[2] + p[2]*y[2]
    if t < t1:
        ydot[1] = 0.0
    else:
        ydot[1] = -p[0]*y[0]*y[1] + p[1]*y[2]
    ydot[2] = p[0]*y[0]*y[1] - p[1]*y[2] - p[2]*y[2]
    return ydot


ydot = np.zeros(3)
p = np.array([0.01, 0.25, 0.1])
y0 = [20.0, 100.0, 0.0]
t = np.linspace(0, 200, 2001)
t1 = 20.0

sol = odeint(ode_rhs, y0, t, args=(p, t1))


plt.figure(1)
plt.clf()

plt.subplot(3, 1, 1)
plt.plot(t, sol[:, 0])
plt.axvline(t1, color='r')
plt.grid(True)
plt.ylabel('y[0]')


plt.subplot(3, 1, 2)
plt.plot(t, sol[:, 1])
plt.axvline(t1, color='r')
plt.grid(True)
plt.ylabel('y[1]')
plt.ylim(0, 110)

plt.subplot(3, 1, 3)
plt.plot(t, sol[:, 2])
plt.axvline(t1, color='r')
plt.grid(True)
plt.ylabel('y[2]')
plt.xlabel('t')

plt.show()

上述方法的一个细微变化是通过添加a来修改系统 参数为0或1.当参数为0时,求解系统,当参数为1时,解决整个系统。然后,ydot[1]的代码(在我的小例子中)是

ydot[1] = full * (-p[0]*y[0]*y[1] + p[1]*y[2])

其中full是参数。

为了处理平衡阶段,系统在0 <= t <1时解决一次。 t1用 full=0。然后使用平衡溶液的最终值作为 第二个解决方案的初始条件,使用full=1运行。这种方法的优点是你不会强迫求解器处理不连续性。

以下是代码的外观。

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt


def ode_rhs(y, t, p, full):
    ydot[0] = -p[0]*y[0]*y[1] + p[1]*y[2] + p[2]*y[2]
    ydot[1] = full * (-p[0]*y[0]*y[1] + p[1]*y[2])
    ydot[2] = p[0]*y[0]*y[1] - p[1]*y[2] - p[2]*y[2]
    return ydot


ydot = np.zeros(3)
p = np.array([0.01, 0.25, 0.1])
y0 = [20.0, 100.0, 0.0]
t1 = 20.0  # Equilibration time
tf = 200.0  # Final time

# Solve the equilibration phase.
teq = np.linspace(0, t1, 100)
full = 0
soleq = odeint(ode_rhs, y0, teq, args=(p, full))

# Solve the full system, using the final point of the
# equilibration phase as the initial condition.
y0 = soleq[-1]
# Note: the system is autonomous, so we could just as well start
# at t0=0.  But starting at t1 makes the plots (below) align without
# any additional shifting of the time arrays.
t = np.linspace(t1, tf, 2000)
full = 1
sol = odeint(ode_rhs, y0, t, args=(p, full))

plt.figure(2)
plt.clf()
plt.subplot(3, 1, 1)
plt.plot(teq, soleq[:, 0], t, sol[:, 0])
plt.axvline(t1, color='r')
plt.grid(True)
plt.ylabel('y[0]')

plt.subplot(3, 1, 2)
plt.plot(teq, soleq[:, 1], t, sol[:, 1])
plt.axvline(t1, color='r')
plt.grid(True)
plt.ylabel('y[1]')
plt.ylim(0, 110)

plt.subplot(3, 1, 3)
plt.plot(teq, soleq[:, 2], t, sol[:, 2])
plt.axvline(t1, color='r')
plt.grid(True)
plt.ylabel('y[2]')
plt.xlabel('t')

plt.show()

这是它生成的情节(第一个例子中的情节是 几乎完全一样): plot of equilibration and full solutions

答案 1 :(得分:1)

这个答案对我不起作用,因为我需要定期改变我的初始条件。因此,我想提出替代解决方案,即在函数本身内部的微分方程的替代条件:

我们查看t的值并进行调整:

if int(t) > 20:
    full = 1
else:
    full = 0

这里面是一个函数:

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

def ode_rhs(y, t, p, full):

    if int(t) > 20:
        full = 1
    else:
        full = 0

    ydot[0] = -p[0]*y[0]*y[1] + p[1]*y[2] + p[2]*y[2]
    ydot[1] = full * (-p[0]*y[0]*y[1] + p[1]*y[2])
    ydot[2] = p[0]*y[0]*y[1] - p[1]*y[2] - p[2]*y[2]
    return ydot

ydot = np.zeros(3)

# intial conditions
p = np.array([0.01, 0.25, 0.1])
y0 = [20.0, 100.0, 0.0]
t = np.linspace(0, 200, 100)
full = 0

# solve equation
solution = odeint(ode_rhs, y0, t, args=(p, full))

plt.figure()
plt.clf()
plt.subplot(3, 1, 1)
plt.plot(t, solution[:, 0])
plt.axvline(20, color='r')  # vertical line
plt.grid(True)
plt.ylabel('y[0]')

plt.subplot(3, 1, 2)
plt.plot(t, solution[:, 1])
plt.axvline(20, color='r')  # vertical line
plt.grid(True)
plt.ylabel('y[1]')
plt.ylim(0, 110)

plt.subplot(3, 1, 3)
plt.plot(t, solution[:, 2])
plt.axvline(20, color='r')  # x=20 vertical line
plt.grid(True)
plt.ylabel('y[2]')
plt.xlabel('t')

plt.show()

这允许调用函数来解决方程一次。

  • 您不必混淆上一步的初始条件
  • 更容易策划
  • 代码更清晰,更易于管理

更重要的是,您现在可以在等式内定期调整参数。例如,假设您有t = [0:200],并且您希望每20步更改完整的值,您可以这样做:

if int(t/20) % 2 == 0:
    full = 1
else:
    full = 0

alternating value of the variable *full*