我正在创建随机Toeplitz矩阵来估计它们可逆的概率。我目前的代码是
import random
from scipy.linalg import toeplitz
import numpy as np
for n in xrange(1,25):
rankzero = 0
for repeats in xrange(50000):
column = [random.choice([0,1]) for x in xrange(n)]
row = [column[0]]+[random.choice([0,1]) for x in xrange(n-1)]
matrix = toeplitz(column, row)
if (np.linalg.matrix_rank(matrix) < n):
rankzero += 1
print n, (rankzero*1.0)/50000
这可以加快吗?
我想增加值50000以获得更高的准确度,但目前这样做太慢了。
仅使用for n in xrange(10,14)
的分析显示
400000 9.482 0.000 9.482 0.000 {numpy.linalg.lapack_lite.dgesdd}
4400000 7.591 0.000 11.089 0.000 random.py:272(choice)
200000 6.836 0.000 10.903 0.000 index_tricks.py:144(__getitem__)
1 5.473 5.473 62.668 62.668 toeplitz.py:3(<module>)
800065 4.333 0.000 4.333 0.000 {numpy.core.multiarray.array}
200000 3.513 0.000 19.949 0.000 special_matrices.py:128(toeplitz)
200000 3.484 0.000 20.250 0.000 linalg.py:1194(svd)
6401273/6401237 2.421 0.000 2.421 0.000 {len}
200000 2.252 0.000 26.047 0.000 linalg.py:1417(matrix_rank)
4400000 1.863 0.000 1.863 0.000 {method 'random' of '_random.Random' objects}
2201015 1.240 0.000 1.240 0.000 {isinstance}
[...]
答案 0 :(得分:3)
一种方法是通过缓存放置值的索引来重复调用toeplitz()函数来保存一些工作。以下代码比原始代码快约30%。其余的表现是在排名计算中...... 而且我不知道对于0和1的toeplitz矩阵是否存在更快的秩计算。
(更新)如果用scipy.linalg.det()== 0替换matrix_rank,代码实际上要快4倍(行列式比小矩阵的秩计算快)
import random
from scipy.linalg import toeplitz, det
import numpy as np,numpy.random
class si:
#cache of info for toeplitz matrix construction
indx = None
l = None
def xtoeplitz(c,r):
vals = np.concatenate((r[-1:0:-1], c))
if si.indx is None or si.l != len(c):
a, b = np.ogrid[0:len(c), len(r) - 1:-1:-1]
si.indx = a + b
si.l = len(c)
# `indx` is a 2D array of indices into the 1D array `vals`, arranged so
# that `vals[indx]` is the Toeplitz matrix.
return vals[si.indx]
def doit():
for n in xrange(1,25):
rankzero = 0
si.indx=None
for repeats in xrange(5000):
column = np.random.randint(0,2,n)
#column=[random.choice([0,1]) for x in xrange(n)] # original code
row = np.r_[column[0], np.random.randint(0,2,n-1)]
#row=[column[0]]+[random.choice([0,1]) for x in xrange(n-1)] #origi
matrix = xtoeplitz(column, row)
#matrix=toeplitz(column,row) # original code
#if (np.linalg.matrix_rank(matrix) < n): # original code
if np.abs(det(matrix))<1e-4: # should be faster for small matrices
rankzero += 1
print n, (rankzero*1.0)/50000
答案 1 :(得分:2)
这两行构建了0和1的列表:
column = [random.choice([0,1]) for x in xrange(n)]
row = [column[0]]+[random.choice([0,1]) for x in xrange(n-1)]
有一些无效率。他们不必要地构建,扩展和丢弃大量列表,并且他们在列表上调用random.choice()来获得真正只是一个随机位。我把他们加速了约500%:
column = [0 for i in xrange(n)]
row = [0 for i in xrange(n)]
# NOTE: n must be less than 32 here, or remove int() and lose some speed
cbits = int(random.getrandbits(n))
rbits = int(random.getrandbits(n))
for i in xrange(n):
column[i] = cbits & 1
cbits >>= 1
row[i] = rbits & 1
rbits >>= 1
row[0] = column[0]
答案 2 :(得分:1)
看起来你的原始代码正在通过首先计算输入矩阵的LU分解来调用lapack例程dgesdd
来解决线性系统。
用matrix_rank
替换det
使用lapack的dgetrf
计算行列式,它只计算输入矩阵(http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.det.html)的LU分解。
matrix_rank
和det
调用的渐近复杂度因此是O(n ^ 3),即LU分解的复杂性。