试图在游戏中构建最佳塔位置算法

时间:2009-10-26 17:36:04

标签: algorithm game-theory

这将是一个很长的帖子,只是为了好玩,所以如果你没有太多时间去帮助人们提出更重要的问题:)

最近在xbox上发布了一款名为“Tower Bloxx”的游戏。游戏的一部分是以最佳方式在场地上放置不同颜色的塔,以最大化最有价值的塔的数量。我写了一个算法,可以确定最有效的塔位置,但它不是非常有效,而且几乎只是强制所有可能的组合。对于具有4种塔型的4x4油田,它可在约1小时内解决,5种塔型需要约40小时,这太多了。

以下是规则: 有5种类型的塔可以放在一个场地上。有几种类型的字段,最简单的是4x4矩阵,其他字段有一些“空白”,你无法构建。您的目标是尽可能多地在场地上放置最有价值的塔,以最大化场地上的总塔值(假设所有塔都是一次建造的,没有转弯)。

塔型(按从少到最有价值的顺序):

  • 蓝色 - 可以放在任何地方,值= 10
  • 红色 - 只能放置在蓝色之外,值= 20
  • 绿色 - 除红色和蓝色外,值= 30
  • 黄色 - 除绿色,红色和蓝色外,值= 40
  • 白色 - 除黄色,绿色,红色和蓝色外,值= 100

这意味着,例如绿色塔在北,南,西或东邻居单元中应至少有1个红色塔和1个蓝色塔(对角线不计算)。白塔应该被所有其他颜色包围。

以下是我在4x4字段上的4个塔的算法:

  1. 组合总数= 4 ^ 16
  2. 循环通过[1..4 ^ 16]并将每个数字转换为base4字符串以编码塔位置,因此4 ^ 16 =“3333 3333 3333 3333”代表我们的塔类型(0 =蓝色,。 ..,3 =黄色)
  3. 将塔架放置字符串转换为矩阵。
  4. 对于矩阵中的每个塔,检查其邻居,如果任何要求失败,则整个组合失败。
  5. 将所有正确的组合放入数组中,然后按字典顺序将此数组排序为字符串,以找到最佳组合(首先需要对字符串中的字符进行排序)。
  6. 我想出的唯一优化是跳过不包含任何最有价值的塔的组合。它跳过一些处理,但我仍然遍历所有4 ^ 16组合。

    有人想过如何改进这个吗?如果是java或php,代码示例会很有用。

    ------- --------更新

    在添加更多非法状态后(黄色不能在角落中建造,白色不能在角落和边缘建造,场地应至少包含每个类型的一个塔),意识到只能建造1个白色塔楼在4x4字段和优化java代码上,总时间从40小时降至16小时。也许线程会将其降低到10小时,但这可能是暴力限制。

7 个答案:

答案 0 :(得分:5)

我发现这个问题很有趣,因为我自己在教Haskell,所以我决定尝试用这种语言实现解决方案。

我考虑过分支机构,但是无法想出一个很好的方法来限制解决方案,所以我只是通过丢弃那些违反规则的董事会来进行一些修剪。

我的算法以“空”板开始工作。它将塔的每种可能颜色放置在第一个空槽中,并且在每种情况下(每种颜色)然后递归地调用自身。递归调用尝试第二个插槽中的每种颜色,再次递归,直到电路板已满。

当每个塔被放置时,我检查刚刚放置的塔及其所有邻居,以验证他们是否遵守规则,将任何空的邻居视为外卡。因此,如果白塔有四个空的邻居,我认为它是有效的。如果展示位置无效,我不会对该展示位置进行递归,从而有效地修剪其下的整个可能性树。

编写代码的方式,我生成所有可能解决方案的列表,然后查看列表以找到最佳解决方案。实际上,由于Haskell的懒惰评估,列表元素是在搜索功能需要时生成的,并且因为它们从未被再次引用,所以它们立即可用于垃圾收集,因此即使对于5x5板,内存使用也相当小(2 MB)。

表现非常好。在我的2.1 GHz笔记本电脑上,该程序的编译版本使用一个内核在约50秒内解决了4x4案例。我现在正在运行5x5示例,看看需要多长时间。由于功能代码很容易并行化,我还将尝试并行处理。有一个并行化的Haskell编译器,不仅可以跨多个核心扩展工作,而且可以跨多个机器,这是一个非常可并行化的问题。

到目前为止,这是我的代码。我意识到你指定了Java或PHP,而Haskell则完全不同。如果你想玩它,你可以修改底部正上方的变量“bnd”的定义来设置电路板的大小。只需将其设置为((1,1),(x,y)),其中x和y分别是列数和行数。

import Array
import Data.List

-- Enumeration of Tower types.  "Empty" isn't really a tower color,
-- but it allows boards to have empty cells
data Tower = Empty | Blue | Red | Green | Yellow | White
             deriving(Eq, Ord, Enum, Show)

type Location = (Int, Int)
type Board = Array Location Tower

-- towerScore omputes the score of a single tower
towerScore :: Tower -> Int
towerScore White = 100
towerScore t     = (fromEnum t) * 10

-- towerUpper computes the upper bound for a single tower
towerUpper :: Tower -> Int
towerUpper Empty = 100
towerUpper t = towerScore t

-- boardScore computes the score of a board
boardScore :: Board -> Int
boardScore b = sum [ towerScore (b!loc) | loc <- range (bounds b) ]

-- boardUpper computes the upper bound of the score of a board
boardUpper :: Board -> Int
boardUpper b = sum [ bestScore loc | loc <- range (bounds b) ]
    where
      bestScore l | tower == Empty = 
                      towerScore (head [ t | t <- colors, canPlace b l t ])
                  | otherwise = towerScore tower
                  where 
                    tower = b!l
                    colors = reverse (enumFromTo Empty White)

-- Compute the neighbor locations of the specified location
neighborLoc :: ((Int,Int),(Int,Int)) -> (Int,Int) -> [(Int,Int)]
neighborLoc bounds (col, row) = filter valid neighborLoc'
    where
      valid loc = inRange bounds loc
      neighborLoc' = [(col-1,row),(col+1,row),(col,row-1),(col,row+1)]

-- Array to store all of the neighbors of each location, so we don't
-- have to recalculate them repeatedly.
neighborArr = array bnd [(loc, neighborLoc bnd loc) | loc <- range bnd]

-- Get the contents of neighboring cells
neighborTowers :: Board -> Location -> [Tower]
neighborTowers board loc = [ board!l | l <- (neighborArr!loc) ]

-- The tower placement rule.  Yields a list of tower colors that must
-- be adjacent to a tower of the specified color.
requiredTowers :: Tower -> [Tower]
requiredTowers Empty  = []
requiredTowers Blue   = []
requiredTowers Red    = [Blue]
requiredTowers Green  = [Red, Blue]
requiredTowers Yellow = [Green, Red, Blue]
requiredTowers White  = [Yellow, Green, Red, Blue]

-- cellValid determines if a cell satisfies the rule.
cellValid :: Board -> Location -> Bool
cellValid board loc = null required ||
                      null needed   ||
                      (length needed <= length empties)
    where
      neighbors = neighborTowers board loc
      required  = requiredTowers (board!loc)
      needed    = required \\ neighbors
      empties   = filter (==Empty) neighbors

-- canPlace determines if 'tower' can be placed in 'cell' without
-- violating the rule.
canPlace :: Board -> Location -> Tower -> Bool
canPlace board loc tower =
    let b' = board // [(loc,tower)]
    in cellValid b' loc && and [ cellValid b' l | l <- neighborArr!loc ]

-- Generate a board full of empty cells       
cleanBoard :: Array Location Tower
cleanBoard = listArray bnd (replicate 80 Empty)

-- The heart of the algorithm, this function takes a partial board
-- (and a list of empty locations, just to avoid having to search for
-- them) and a score and returns the best board obtainable by filling
-- in the partial board
solutions :: Board -> [Location] -> Int -> Board
solutions b empties best | null empties = b
solutions b empties best = 
    fst (foldl' f (cleanBoard, best) [ b // [(l,t)] | t <- colors, canPlace b l t ])
    where
      f :: (Board, Int) -> Board -> (Board, Int)
      f (b1, best) b2  | boardUpper b2 <= best = (b1, best)
                       | otherwise = if newScore > lstScore
                                     then (new, max newScore best)
                                     else (b1, best)
                       where
                         lstScore = boardScore b1
                         new      = solutions b2 e' best
                         newScore = boardScore new
      l = head empties
      e' = tail empties

colors = reverse (enumFromTo Blue White)

-- showBoard converts a board to a printable string representation
showBoard :: Board -> String
showBoard board = unlines [ printRow row | row <- [minrow..maxrow] ]
    where
      ((mincol, minrow), (maxcol, maxrow)) = bounds board
      printRow row = unwords [ printCell col row | col <- [mincol..maxcol] ]
      printCell col row = take 1 (show (board!(col,row)))

-- Set 'bnd' to the size of the desired board.                          
bnd = ((1,1),(4,4))

-- Main function generates the solutions, finds the best and prints
-- it out, along with its score
main = do putStrLn (showBoard best); putStrLn (show (boardScore best))
       where
         s = solutions cleanBoard (range (bounds cleanBoard)) 0
         best = s

另外,请记住这是我的第一个非平凡的Haskell程序。我相信它可以更加优雅和简洁地完成。

更新:由于用5种颜色做5x5仍然非常耗时(我等了12个小时但还没完成),我又看了一下如何使用边界来修剪更多的搜索树。

我的第一种方法是通过假设每个空单元都填充白色塔来估计部分填充板的上限。然后,我修改了“解决方案”功能,以跟踪所看到的最佳分数,并忽略任何上限小于最佳分数的董事会。

这帮助了一些人,将4x4x5电路板从23s减少到15s。为了进一步改进它,我修改了上限函数,假设每个Empty都填充了尽可能最好的塔,与现有的非空单元格内容一致。这有很大帮助,将4x4x5时间减少到2s。

在5x5x5上运行它需要2600s,给出以下板:

G B G R B
R B W Y G
Y G R B R
B W Y G Y
G R B R B

得分为730。

我可以进行另一次修改,让它找到所有最大得分板,而不仅仅是一个。

答案 1 :(得分:4)

如果您不想执行A *,请使用branch and bound方法。这个问题应该相对容易编码,因为你的价值函数定义得很好。我想你应该能够相对容易地删除搜索空间的大部分区域。但是,由于您的搜索空间非常大,可能还需要一些时间。只有一种方法可以找到:)

维基文章不是世界上最好的。谷歌可以找到很多很好的例子和树木,以进一步说明这种方法。

答案 2 :(得分:3)

改善蛮力方法的一个简单方法是仅探索合法状态。例如,如果您正在尝试所有可能的状态,那么您将测试右上角是白色塔的许多状态。所有这些州都是非法的。生成并测试所有这些状态没有意义。因此,您希望一次生成一个块状态,并且只有在实际处于潜在有效状态时才会更深入到树中。这将使您的搜索树减少许多个数量级。

您可以做更多精彩的事情,但这对您当前的解决方案来说很容易理解(希望如此)。

答案 3 :(得分:3)

我认为你会想要使用分支定界算法,因为我认为为A *实现提出一个好的启发式将很难(但这只是我的直觉)。

分支定界实现的伪代码是:

board = initial board with nothing on it, probably a 2D array

bestBoard = {}

function findBest(board)
  if no more pieces can be added to board then
     if score(board) > score(bestBoard) then
       bestBoard = board
     return
  else
    for each piece P we can legally add to board
      newBoard = board with piece P added
      //loose upper bound, could be improved
      if score(newBoard) + 100*number of blanks in newBoard > score(bestBoard)
        findBestHelper(newBoard)

我们的想法是按顺序搜索所有可能的电路板,但我们会跟踪到目前为止找到的最佳电路板(这是一个限制)。然后,如果我们找到一个我们知道永远不会比最好的板更好的部分板,那么我们就不再寻找那个局部板了:我们修剪了搜索树的那个分支。

在上面的代码中,我正在进行检查,假设所有空白都将由白色部分填充,因为我们不能做得更好。我确信通过一点点思考你可以想出一个比这更严格的约束。

您可以尝试优化的另一个地方是for-each循环的顺序。您想按顺序正确的顺序尝试。也就是说,最理想的是你想要的第一个解决方案是最好的解决方案,或者至少有一个解决方案得分非常高。

答案 4 :(得分:1)

似乎一个好的方法是从一个白色的塔开始,然后根据要求在它周围建立一组塔,试图找到可以作为互锁瓷砖的最小可能的彩色形状组。

答案 5 :(得分:1)

我想提倡linear programming with integer unknowns,但事实证明即使在二进制情况下它也是NP难的。但是,您仍然可以在优化像您这样的问题上取得巨大成功,因为这里有许多有效的解决方案,您只需要最好的解决方案。

线性规划,对于这类问题,基本上相当于有很多变量(例如,单元格中存在的红塔数量(M,N))和变量之间的关系(例如,数量)单元格(M,N)中的白色塔必须小于或等于其所有邻居中具有最小此类数量的非白色塔的数量。写一个线性程序真的很痛苦,但是如果你想要一个在几秒钟内运行的解决方案,这可能是你最好的选择。

答案 6 :(得分:1)

你已经收到很多关于算法方面的好建议,所以我没有太多要补充的内容。但是,假设Java是语言,这里有一些相当明显的性能改进建议。

  • 确保您没有实例化4 ^ 16循环内的任何对象。 JVM重新初始化现有对象比创建新对象要便宜得多。使用基元数组甚至更便宜。 :)
  • 如果您能提供帮助,请远离收集课程。它们会增加你可能不需要的大量开销。
  • 确保您没有连接任何字符串。使用StringBuilder。
  • 最后,考虑用C重写整件事。