我有Daniel Shiffman的代码(下图)。我想读出Z坐标。我根本不确定如何做到这一点,所以任何帮助都会非常感激。
AveragePointTracking.pde
// Daniel Shiffman
// Tracking the average location beyond a given depth threshold
// Thanks to Dan O'Sullivan
// http://www.shiffman.net
// https://github.com/shiffman/libfreenect/tree/master/wrappers/java/processing
import org.openkinect.*;
import org.openkinect.processing.*;
// Showing how we can farm all the kinect stuff out to a separate class
KinectTracker tracker;
// Kinect Library object
Kinect kinect;
void setup() {
size(640,600);
kinect = new Kinect(this);
tracker = new KinectTracker();
}
void draw() {
background(255);
// Run the tracking analysis
tracker.track();
// Show the image
tracker.display();
// Let's draw the raw location
PVector v1 = tracker.getPos();
fill(50,100,250,200);
noStroke();
ellipse(v1.x,v1.y,10,10);
// Let's draw the "lerped" location
//PVector v2 = tracker.getLerpedPos();
//fill(100,250,50,200);
//noStroke();
//ellipse(v2.x,v2.y,20,20);
// Display some info
int t = tracker.getThreshold();
fill(0);
text("Location-X: " + v1.x,10,500);
text("Location-Y: " + v1.y,10,530);
text("Location-Z: ",10,560);
text("threshold: " + t,10,590);
}
void stop() {
tracker.quit();
super.stop();
}
KinectTracker.pde
class KinectTracker {
// Size of kinect image
int kw = 640;
int kh = 480;
int threshold = 500;
// Raw location
PVector loc;
// Interpolated location
PVector lerpedLoc;
// Depth data
int[] depth;
PImage display;
KinectTracker() {
kinect.start();
kinect.enableDepth(true);
// We could skip processing the grayscale image for efficiency
// but this example is just demonstrating everything
kinect.processDepthImage(true);
display = createImage(kw,kh,PConstants.RGB);
loc = new PVector(0,0);
lerpedLoc = new PVector(0,0);
}
void track() {
// Get the raw depth as array of integers
depth = kinect.getRawDepth();
// Being overly cautious here
if (depth == null) return;
float sumX = 0;
float sumY = 0;
float count = 0;
for(int x = 0; x < kw; x++) {
for(int y = 0; y < kh; y++) {
// Mirroring the image
int offset = kw-x-1+y*kw;
// Grabbing the raw depth
int rawDepth = depth[offset];
// Testing against threshold
if (rawDepth < threshold) {
sumX += x;
sumY += y;
count++;
}
}
}
// As long as we found something
if (count != 0) {
loc = new PVector(sumX/count,sumY/count);
}
// Interpolating the location, doing it arbitrarily for now
lerpedLoc.x = PApplet.lerp(lerpedLoc.x, loc.x, 0.3f);
lerpedLoc.y = PApplet.lerp(lerpedLoc.y, loc.y, 0.3f);
}
PVector getLerpedPos() {
return lerpedLoc;
}
PVector getPos() {
return loc;
}
void display() {
PImage img = kinect.getDepthImage();
// Being overly cautious here
if (depth == null || img == null) return;
// Going to rewrite the depth image to show which pixels are in threshold
// A lot of this is redundant, but this is just for demonstration purposes
display.loadPixels();
for(int x = 0; x < kw; x++) {
for(int y = 0; y < kh; y++) {
// mirroring image
int offset = kw-x-1+y*kw;
// Raw depth
int rawDepth = depth[offset];
int pix = x+y*display.width;
if (rawDepth < threshold) {
// A red color instead
display.pixels[pix] = color(245,100,100);
}
else {
display.pixels[pix] = img.pixels[offset];
}
}
}
display.updatePixels();
// Draw the image
image(display,0,0);
}
void quit() {
kinect.quit();
}
int getThreshold() {
return threshold;
}
void setThreshold(int t) {
threshold = t;
}
}
答案 0 :(得分:0)
有两种方法可以做到这一点......
Daniel的代码现在访问坐标的方式是使用二维向量(即带有X和Y)。 您可以将其更改为三维向量(因此它也存储Z坐标),OpenKinect库应该以与X和Y相同的方式返回Z坐标... 我认为 ;-)(必须检查他的来源)。但是这将返回每个像素的Z坐标,然后你必须循环,这很麻烦,而且计算成本很高......
现在,Daniel在这个示例中实际执行此操作的方式是找到特定XY位置的深度并将其返回给您如果超过某个阈值...这是您在KinectTracker中看到的rawDepth整数...所以它测试它是否小于阈值(您可以更改),如果是,它会将这些像素着色并将它们写入图像缓冲区......然后您就可以了例如,要求该图像的XY坐标,或将其传递给blob检测程序,等等......
答案 1 :(得分:0)
主要有两个步骤:
请注意,坐标是镜像的,通常对索引的计算如下:
int offset = kw-x-1+y*kw;
中所述
所以理论上你需要的就是在track()方法结束时这样的东西:
index = y*width+x
像这样:
lerpedLoc.z = depth[kw-((int)lerpedLoc.x)-1+((int)lerpedLoc.y)*kw];
我现在无法使用kinect进行测试,但这应该可行。我不确定你是否会获得正确像素或镜像像素的深度。唯一的另一种选择是:
void track() {
// Get the raw depth as array of integers
depth = kinect.getRawDepth();
// Being overly cautious here
if (depth == null) return;
float sumX = 0;
float sumY = 0;
float count = 0;
for(int x = 0; x < kw; x++) {
for(int y = 0; y < kh; y++) {
// Mirroring the image
int offset = kw-x-1+y*kw;
// Grabbing the raw depth
int rawDepth = depth[offset];
// Testing against threshold
if (rawDepth < threshold) {
sumX += x;
sumY += y;
count++;
}
}
}
// As long as we found something
if (count != 0) {
loc = new PVector(sumX/count,sumY/count);
}
// Interpolating the location, doing it arbitrarily for now
lerpedLoc.x = PApplet.lerp(lerpedLoc.x, loc.x, 0.3f);
lerpedLoc.y = PApplet.lerp(lerpedLoc.y, loc.y, 0.3f);
lerpedLoc.z = depth[kw-((int)lerpedLoc.x)-1+((int)lerpedLoc.y)*kw];
}
答案 2 :(得分:0)
在void track()的末尾添加它:
lerpedLoc.z = depth[kw-((int)lerpedLoc.x)-1+((int)lerpedLoc.y)*kw];
然后我将void draw()中的最后一个块更改为此以读出Z值:
// Display some info
int t = tracker.getThreshold();
fill(0);
text("Location-X: " + v1.x,10,500);
text("Location-Y: " + v1.y,10,530);
text("Location-Z: " + v2.z,10,560); // <<Adding this worked!
text("threshold: " + t,10,590);