如何将IEEE 754单精度二进制浮点数转换为十进制?

时间:2013-04-23 08:34:05

标签: c binary ieee-754

  

我正在开发一个需要将32位数转换为十进制数的程序。

我从输入获得的数字是一个32位数字,表示为浮点数。第一位是符号,接下来的8位是指数,其他23位是尾数。我在C中使用该程序。在输入中,我将该数字作为char[]数组,然后我创建一个新的int[]数组,其中存储符号,指数和尾数。但是,当我试图将它存储在某种数据类型中时,我对尾数有问题,因为我需要将尾数用作数字,而不是数组:formula=sign*(1+0.mantissa)*2^(exponent-127)

这是我用来存储尾数的代码,但程序仍然会得到错误的结果:

double oMantissa=0;
int counter=0;
for(counter=0;counter<23;counter++)
{
    if(mantissa[counter]==1)
    {
        oMantissa+=mantissa[counter]*pow(10,-counter);
    }
}

mantissa[]是一个int数组,我已经从char数组中转换了尾数。当我从formula得到值时,它必须是二进制数,我必须将其转换为十进制数,所以我将得到数字的值。你可以帮我存储23位的尾数吗?并且,我不能使用像strtoul这样的函数将32位数字直接转换为二进制数。我必须使用formula

3 个答案:

答案 0 :(得分:2)

根据所有公式和样本编号以及计算器,下面代码的哪一部分很难正确?

#include <stdio.h>
#include <limits.h>

#if UINT_MAX >= 0xFFFFFFFF
typedef unsigned uint32;
#else
typedef unsigned long uint32;
#endif

#define C_ASSERT(expr) extern char CAssertExtern[(expr)?1:-1]

// Ensure uint32 is exactly 32-bit
C_ASSERT(sizeof(uint32) * CHAR_BIT == 32);

// Ensure float has the same number of bits as uint32, 32
C_ASSERT(sizeof(uint32) == sizeof(float));

double Ieee754SingleDigits2DoubleCheat(const char s[32])
{
  uint32 v;
  float f;
  unsigned i;
  char *p1 = (char*)&v, *p2 = (char*)&f;

  // Collect binary digits into an integer variable
  v = 0;
  for (i = 0; i < 32; i++)
    v = (v << 1) + (s[i] - '0');

  // Copy the bits from the integer variable to a float variable
  for (i = 0; i < sizeof(f); i++)
    *p2++ = *p1++;

  return f;
}

double Ieee754SingleDigits2DoubleNoCheat(const char s[32])
{
  double f;
  int sign, exp;
  uint32 mant;
  int i;

  // Do you really need strto*() here?
  sign = s[0] - '0';

  // Do you really need strto*() or pow() here?
  exp = 0;
  for (i = 1; i <= 8; i++)
    exp = exp * 2 + (s[i] - '0');

  // Remove the exponent bias
  exp -= 127;

  // Should really check for +/-Infinity and NaNs here

  if (exp > -127)
  {
    // Normal(ized) numbers
    mant = 1; // The implicit "1."
    // Account for "1." being in bit position 23 instead of bit position 0
    exp -= 23;
  }
  else
  {
    // Subnormal numbers
    mant = 0; // No implicit "1."
    exp = -126; // See your IEEE-54 formulas
    // Account for ".1" being in bit position 22 instead of bit position -1
    exp -= 23;
  }

  // Or do you really need strto*() or pow() here?
  for (i = 9; i <= 31; i++)
    mant = mant * 2 + (s[i] - '0');

  f = mant;

  // Do you really need pow() here?
  while (exp > 0)
    f *= 2, exp--;

  // Or here?
  while (exp < 0)
    f /= 2, exp++;

  if (sign)
    f = -f;

  return f;
}

int main(void)
{
  printf("%+g\n", Ieee754SingleDigits2DoubleCheat("110000101100010010000000000000000"));
  printf("%+g\n", Ieee754SingleDigits2DoubleNoCheat("010000101100010010000000000000000"));
  printf("%+g\n", Ieee754SingleDigits2DoubleCheat("000000000100000000000000000000000"));
  printf("%+g\n", Ieee754SingleDigits2DoubleNoCheat("100000000100000000000000000000000"));
  printf("%+g\n", Ieee754SingleDigits2DoubleCheat("000000000000000000000000000000000"));
  printf("%+g\n", Ieee754SingleDigits2DoubleNoCheat("000000000000000000000000000000000"));
  return 0;
}

输出(ideone):

-98.25
+98.25
+5.87747e-39
-5.87747e-39
+0
+0

答案 1 :(得分:1)

不久前,我有机会编写一份类似的代码,您和其他人可能认为这些代码很有用。它将表示浮点数的字符串作为程序的第一个参数,并将该字符串转换为其 IEEE-754单精度浮点表示及其等效整数值。如果您有任何疑问,请查看并告诉我。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <errno.h>

#if defined(__LP64__) || defined(_LP64)
# define BUILD_64   1
#endif

/* constants for word and double-word size */
#define WDSZ 64
#define DWSZ 128

inline int getmsb (unsigned long x);
char *fmt_binstr (unsigned long n, unsigned char sz, unsigned char szs, char sep);
char *binstr (unsigned long n);
char *fpfrc_bin (float fvalue);
void show_fltmem (float f);
void show_ieee754str (char *s);
void show_ieee754 (float f);
float xstrtof (char *str);
char *form_ieee754SPstr (int sign, char *exp, char *dec, char *frac);

int main (int argc, char** argv) {

    if (argc < 2) {
        fprintf (stderr, "error: insufficient input. Usage: %s float\n", argv[0]);
        return 1;
    }

    char *dp = strchr (argv[1], '.');   /* pointer to decimal point */
    int dec = atoi (argv[1]);           /* integer of decimal part  */
    int frc = (dp) ? atoi (dp + 1) : 0; /* integer of fraction part */

    /* output string input values  */
    printf ("\nString Values:\n");
    printf (" string   : %s\n whole    : %d\n fraction : %d\n\n", argv[1], dec, frc);

    float fvalue = xstrtof (argv[1]);
    float ffrc = fvalue - dec;
    int signbit = (fvalue >= 0) ? 0 : 1;

    /* output float input values   */
    printf ("Float Values:\n");
    printf (" decimal  : %d\n fraction : %f\n\n", dec, ffrc);

    char *fstring = fpfrc_bin (fvalue);         /* fraction part in binary  */
    char *bs = binstr ((unsigned long) dec);    /* decimal part in binary   */

    /* output binary values decimal part/fraction part */
    printf ("Binary Values:\n");
    printf (" decimal  : %s\n fraction : %s\n sign bit : %d\n\n", bs, fstring, signbit);

    /* quick hack of exp bias, biased value, conversion to binary   */
    int bias = (int) strlen (bs) - 1;
    int biasexp = 127+bias;
    char *binexp = binstr ((unsigned long) biasexp);

    /* output summary of biased IEEE-754 exponent */
    printf ("Normalization for biased exponent:\n");
    printf ("\n %s.%s  =>  %s.%s%s\n\n", bs, fstring, "1", (bs+1), fstring);
    printf ("     exponent bias: %d\n unbiased exponent: 127\n", bias);
    printf (" __________________+____\n\n");
    printf ("   biased exponent: %3d\n   binary exponent: %s\n\n", biasexp, binexp);

    /* output summary of IEEE-754 mantissa */
    printf ("Conversion to 'hidden bit' format to form mantissa:\n\n");
    printf (" %s.%s%s  =>  %s%s\n\n", "1", (bs+1), fstring, (bs+1), fstring);

    /* form IEEE-754 binary representation from values computed */
    char *ieee754str = form_ieee754SPstr (signbit, binexp, bs, fstring);

    /* output formatted complete IEEE-754 binary - from computed values above */
    printf ("IEEE-754 Single Precision Floating Point Representation (caclulated value)\n\n");
    show_ieee754str (ieee754str);

    /* output formatted complete IEEE-754 binary - from float value in memory */
    printf ("IEEE-754 Single Precision Floating Point Representation (memory value)\n\n");
    show_ieee754 (fvalue);

    /* output float, binary and integer equivalent */
    show_fltmem (fvalue);

    if (bs) free (bs);
    if (binexp) free (binexp);
    if (ieee754str) free (ieee754str);

    return 0;
}

/** single-precision float in memory
*  output the float, equivalent unsigned int, and
*  binary representation of the number in memory
*/

void show_fltmem (float f)
{
    unsigned int i = *(unsigned int *)&f;

    printf ("\nRepresentations of float value in memory:\n\n");
    printf ("    The float value entered : %f\n\n", f);
    printf ("    binary value in memory  : %s\n\n", fmt_binstr (i, 32, 8, '-'));
    printf ("    bits as unsigned int    : %u\n\n", i);
}

/** most significant bit.
*  return the 0-based most significant bit for any
*  unsigned value using the bit-scan-right assembly
*  directive.
*/
inline int getmsb (unsigned long x)
{
#ifdef BUILD_64
    asm ("bsrq %0, %0" : "=r" (x) : "0" (x));
#else
    asm ("bsr %0, %0" : "=r" (x) : "0" (x));
#endif
    return x;
}

/** returns pointer to formatted binary representation of 'n' zero padded to 'sz'.
*  returns pointer to string contianing formatted binary representation of
*  unsigned 64-bit (or less ) value zero padded to 'sz' digits with char
*  'sep' placed every 'szs' digits. (e.g. 10001010 -> 1000-1010).
*/
char *fmt_binstr (unsigned long n, unsigned char sz, unsigned char szs, char sep) {

    static char s[DWSZ + 1] = {0};
    char *p = s + DWSZ;
    unsigned char i;

    for (i = 0; i < sz; i++) {
        p--;
        if (i > 0 && szs > 0 && i % szs == 0)
            *p-- = sep;
        *p = (n >> i & 1) ? '1' : '0';
    }

    return p;
}

/** returns an allocated string containing unpadded binary
*  representation of the integer value 'n'. This value must
*  be assigned to a pointer and freed to prevent leaks.
*/
char *binstr (unsigned long n)
{
    unsigned char msb = getmsb (n);
    char *s = calloc (msb + 2, sizeof *s);
    char *p = s + msb;
    unsigned char i;

    for (i = 0; i < msb+1; i++) {
        *p-- = (n >> i & 1) ? '1' : '0';
    }

    return s;
}

/** return string containing binary representation of fraction
*  The function takes a float as an argument and computes the
*  binary representation of the fractional part of the float,
*  On success, the function returns a null-terminated string
*  containing the binary value, or NULL otherwise. MAXD of 24
*  (23 + null-term) for Single-Precision mantissa, 53
*  (52 + null-term) for Double-Precision mantissa.
*/
char *fpfrc_bin (float fvalue)
{
    float fv = fvalue - (int)fvalue;
    int MAXD = 24;
    char *fvs = calloc (MAXD, sizeof *fvs);
    if (!fvs) {
        fprintf (stderr, "%s()_error: allocation failed.\n", __func__);
        return NULL;
    }
    char *p = fvs;
    unsigned char it = 0;

    while (fv > 0 && it < MAXD)
    {
        fv = fv * 2.0;
        *p++ = ((int)fv) ? '1' : '0';
        fv = ((int)fv >= 1) ? fv - 1.0 : fv;
        it++;
    }

    return fvs;
}

/** formatted output of ieee-754 representation of float from binary string.
*/
void show_ieee754str (char *s)
{
    printf (" ");
    while (*s)
        printf (" %c", *s++);
    printf ("\n");
    printf (" |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|\n");
    printf (" |s|      exp      |                  mantissa                   |\n\n");
}

/** formatted output of ieee-754 representation of float from stored value.
*/
void show_ieee754 (float f)
{
    printf ("  ");
    int i = 32;
    while (i) {
        i--;
        printf ("%d ", ((*(int *)&f >> i) & 0x1));
    }
    printf ("\n");
    printf (" |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|\n");
    printf (" |s|      exp      |                  mantissa                   |\n\n");
}

/** string to float with error checking. */
float xstrtof (char *str)
{
    char *endptr = NULL;
    errno = 0;

    float val = strtof (str, &endptr);

    /* Check for various possible errors */
    if ((errno == ERANGE && (val == HUGE_VALF || val == HUGE_VALL)) ||
        (errno != 0 && val == 0)) {
        perror ("strtof");
        exit (EXIT_FAILURE);
    }

    if (endptr == str) {
        fprintf (stderr, "No digits were found\n");
        exit (EXIT_FAILURE);
    }

    return val;
}

/** form IEEE-754 binary representation from computed  values for the
*  sign bit, biased exponent binary string, decimal binary string, and
*  fractional binary string, forming the 23-bit mantissa from the decimal
*  and fractional strings, filling with '0' as needed. An allocated
*  string containing the IEEE-754 Single-Precision representation is
*  returned.
*/

char *form_ieee754SPstr (int sign, char *exp, char *dec, char *frac)
{
    char *str = calloc (33, sizeof *str);
    char *p = str + 1;
    char *sp = dec + 1;                         /* leading 1 - hidden bit   */
    size_t fsl = strlen (frac);                 /* length of fractional str */
    size_t manbits = fsl + strlen (sp);         /* available mantissa bits  */
    size_t mdiff = 23 - manbits;                /* diff from required 23    */

    *str = (sign == 0) ? '0' : '1';             /* set sign bit in string   */

    memcpy (p, exp, 8);                         /* set biased exponent      */
    p += 8;

    while (*sp) { *p = *sp++; p++; };           /* mantissa - decimal bits  */

    if (manbits < 23)                           /* test < 23 bits available */
    {
        memcpy (p, frac, fsl);                  /* copy fractional bits     */
        p += fsl;                               /* increment pointer        */
        register size_t it = 0;
        if (mdiff > 0)                          /* fill remaining mantissa  */
            for (it = 0; it < mdiff; it++)
            {
                *p = '0';
                p++;
            }
    }
    else
    {
        memcpy (p, frac, 23);                   /* fill mantissa w/23 bits  */
    }

    return str;
}

示例使用/输出

$ ./bin/ieee754cvt 123.456

String Values:
 string   : 123.456
 whole    : 123
 fraction : 456

Float Values:
 decimal  : 123
 fraction : 0.456001

Binary Values:
 decimal  : 1111011
 fraction : 01110100101111001
 sign bit : 0

Normalization for biased exponent:

 1111011.01110100101111001  =>  1.11101101110100101111001

     exponent bias: 6
 unbiased exponent: 127
 __________________+____

   biased exponent: 133
   binary exponent: 10000101

Conversion to 'hidden bit' format to form mantissa:

 1.11101101110100101111001  =>  11101101110100101111001

IEEE-754 Single Precision Floating Point Representation (caclulated value)

  0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1
 |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|
 |s|      exp      |                  mantissa                   |

IEEE-754 Single Precision Floating Point Representation (memory value)

  0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1
 |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -|
 |s|      exp      |                  mantissa                   |


Representations of float value in memory:

    The float value entered : 123.456001

    binary value in memory  : 01000010-11110110-11101001-01111001

    bits as unsigned int    : 1123477881

答案 2 :(得分:0)

在搜索互联网并无法找到类似功能后, 我写了这些浮点转换函数。

//NOTE memcpy is a more efficient way to do this
//These instructions are presented for reference only
//I Zackery Sobin created these functions
//and I release them into the public domain
//there is no warranty
//they might not work properly
//certain things like NAN or INFINITY might not be handled correctly

#include "math.h" 

float charArray2float(charArray *S)
    {
        unsigned int uintS = charArray2lluint(S, 4);
        unsigned int sign     = (uintS & 0x80000000); //01111111 10000000 00000000 00000000
        unsigned int exponent = (uintS & 0x7F800000); //01111111 10000000 00000000 00000000
        unsigned int mantessa = (uintS & 0x007FFFFF); //00000000 01111111 11111111 11111111
        float normalizedExponent = (float) ((signed char) ((exponent>>23) - 127));
        float normalizedMantessa = (float) 1 + (float) mantessa / pow((float)2,(float)23);
        float theVar = normalizedMantessa * pow((float)2,(float)normalizedExponent);
        if (sign != 0) theVar = theVar * (float) (-1);
        if (fabs(theVar) < pow((float) 10, (float) -38)) theVar = 0;
        return theVar;
    }

long long int charArray2lluint(char *S, int length)
    {
    int x;
    unsigned long long int sum =0;
    for (x = 0; x < length; x++)
            {
        if (isBigEndian){
            sum = sum + ((unsigned long long int) ((unsigned char) S[x]) << ((length-1)-x) * 8);
            }
        else{
            sum = sum + ((unsigned long long int) ((unsigned char) S[length-x-1]) << ((length-1)-x) * 8);
            }
        }
    return sum;
    }

void float_2charArray(char *outputArray, float testVariable1) {    //long int is the same size as regular intz
    int o = 0;
    int x;
    char byteNum[8];
    unsigned int    sign = 0;
    float           mantessa = 0;
    int             exp = 0;
    unsigned int    theResult;
    if (testVariable1 ==0){theResult = 0;}
    else{   if (testVariable1 < 0) {
                sign =  0x80000000;
                testVariable1 = testVariable1 * -1.0;
                }
            int watchdog = 0;
            while (1){
                watchdog++;
                if (watchdog > 512) {   
                    ErrorCode = 6;  //This is a global variable used to see if there is a bug in this function
                    break;
                    }
                mantessa = testVariable1 / powf(2,exp);
                if      (mantessa >= 1 && mantessa < 2) {break;}
                else if (mantessa >= 2.0)               {exp = exp + 1;}
                else if (mantessa < 1   )               {exp = exp - 1;}
                }
            unsigned int fixedExponent =   ((exp+127)<<23);
            unsigned int fixedMantessa = (float) (mantessa -1) * pow((float)2,(float)23);
            theResult = sign + fixedExponent + fixedMantessa;
            }
    unsigned_int_2charArray(byteNum, theResult); 
    if (!isBigEndian)     for (x = 0; x <= 7; x++)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 7; x >= 0; x--)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
}




void double_2charArray(char *outputArray, double testVariable2) {    //long int is the same size as regular int
    int o = 0;
    int x;
    char byteNum[16];
    unsigned long long int sign = 0;
    double mantessa = 0;
    long long int exp = 0;
    unsigned long long int    theResult;

    if (testVariable2 ==0){theResult = 0;theResult = 0;}
    else{   if (testVariable2 < 0) {
                sign =  0x8000000000000000;
                testVariable2 = testVariable2 * -1.0;
                }
            long long int watchdog = 0;
            while (1){
                watchdog++;
                if (watchdog > 512) {                      
                    FlighboardErrorCode = 7;
                    break;
                    }
                mantessa = testVariable2 / powf(2,exp);
                if      (mantessa >= 1 && mantessa < 2) {break;}
                else if (mantessa >= 2.0)               {exp = exp + 1;}
                else if (mantessa < 1   )               {exp = exp - 1;}
                }
            unsigned long long int fixedExponent =   ((exp+1023)<<52);
            unsigned long long int fixedMantessa = (double) (mantessa -1) * pow((double)2,(double)52);
            theResult = sign | (fixedExponent + fixedMantessa);  //Fixme is this quite right?
            }
    unsigned_long_long_int_2charArray(byteNum, theResult); 
    if (!isBigEndian)     for (x = 0; x <= 15; x++)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 15; x >= 0; x--)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);    
    }





void unsigned_long_long_int_2charArray(char *outputArray, unsigned long long int X) {    //long int is the same size as regular int
    int o = 0;
    int x;
    char byteNum[8];
    byteNum[0] = (X & 0x00000000000000FF);
    byteNum[1] = (X & 0x000000000000FF00) >> 8;
    byteNum[2] = (X & 0x0000000000FF0000) >> 16;
    byteNum[3] = (X & 0x00000000FF000000) >> 24;
    byteNum[4] = (X & 0x000000FF00000000) >> 32;
    byteNum[5] = (X & 0x0000FF0000000000) >> 40;
    byteNum[6] = (X & 0x00FF000000000000) >> 48;
    byteNum[7] = (X & 0xFF00000000000000) >> 56;
    if (!isBigEndian)     for (x = 0; x <= 7; x++)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 7; x >= 0; x--)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
}

void long_long_int_2charArray(char *outputArray, long long int X) {    //long int is the same size as regular int
    int o = 0;
    int x;
    char byteNum[8];
    byteNum[0] = (X & 0x00000000000000FF);
    byteNum[1] = (X & 0x000000000000FF00) >> 8;
    byteNum[2] = (X & 0x0000000000FF0000) >> 16;
    byteNum[3] = (X & 0x00000000FF000000) >> 24;
    byteNum[4] = (X & 0x000000FF00000000) >> 32;
    byteNum[5] = (X & 0x0000FF0000000000) >> 40;
    byteNum[6] = (X & 0x00FF000000000000) >> 48;
    byteNum[7] = (X & 0xFF00000000000000) >> 56;
    if (!isBigEndian)     for (x = 0; x <= 7; x++)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 7; x >= 0; x--)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
}

void unsigned_int_2charArray(char *outputArray, unsigned int X) {    //long int is the same size as regular int
    int o = 0;
    int x;
    char byteNum[4];
    byteNum[0] = (X & 0x000000FF);
    byteNum[1] = (X & 0x0000FF00) >> 8;
    byteNum[2] = (X & 0x00FF0000) >> 16;
    byteNum[3] = (X & 0xFF000000) >> 24;
    if (!isBigEndian)     for (x = 0; x <= 3; x++)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 3; x >= 0; x--)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
}

void int_2charArray(char *outputArray, int X) {    //long int is the same size as regular int
    int o = 0;
    int x;
    char byteNum[4];
    byteNum[0] = (X & 0x000000FF);
    byteNum[1] = (X & 0x0000FF00) >> 8;
    byteNum[2] = (X & 0x00FF0000) >> 16;
    byteNum[3] = (X & 0xFF000000) >> 24;
    if (!isBigEndian)     for (x = 0; x <= 3; x++)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 3; x >= 0; x--)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
}

void unsigned_short_int_2charArray(char *outputArray, unsigned short int X)   {
    int o = 0;
    int x;
    char byteNum[2];
    byteNum[0] = (X & 0x00FF);
    byteNum[1] = (X & 0xFF00) >> 8;
    if (!isBigEndian)     for (x = 0; x <= 1; x++)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 1; x >= 0; x--)    {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
}

void short_int_2charArray(char *outputArray, short int X)   {
    int o = 0;
    int x;
    char byteNum[2];
    byteNum[0] = (X & 0x00FF);
    byteNum[1] = (X & 0xFF00) >> 8;
    if (!isBigEndian)     for (x = 0; x <= 1; x++) {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
    else if (isBigEndian) for (x = 1; x >= 0; x--) {outputArray[o]=byteNum[x]; o++;}  // datagram.append(byteNum[x]);
}

void unsigned_char_2charArray(char *outputArray, unsigned char X)   {
    outputArray[0] = X;
}

void char_2charArray(char *outputArray, char X)   {
     outputArray[0] = X;   
}