所以在numpy数组中有内置函数来获取对角线索引,但我似乎无法弄清楚如何从右上角而不是左上角开始对角线。
这是从左上角开始的正常代码:
>>> import numpy as np
>>> array = np.arange(25).reshape(5,5)
>>> diagonal = np.diag_indices(5)
>>> array
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
>>> array[diagonal]
array([ 0, 6, 12, 18, 24])
所以如果我想要它返回,我该怎么用:
array([ 4, 8, 12, 16, 20])
答案 0 :(得分:35)
有
In [47]: np.diag(np.fliplr(array))
Out[47]: array([ 4, 8, 12, 16, 20])
或
In [48]: np.diag(np.rot90(array))
Out[48]: array([ 4, 8, 12, 16, 20])
在这两者中,np.diag(np.fliplr(array))
更快:
In [50]: %timeit np.diag(np.fliplr(array))
100000 loops, best of 3: 4.29 us per loop
In [51]: %timeit np.diag(np.rot90(array))
100000 loops, best of 3: 6.09 us per loop
答案 1 :(得分:3)
以下是两个想法:
step = len(array) - 1
# This will make a copy
array.flat[step:-step:step]
# This will make a veiw
array.ravel()[step:-step:step]
答案 2 :(得分:1)
这是使用numpy切片的简单方法。我个人觉得这并不令人费解(但承认fliplr
更具描述性!)。
为了突出说明该示例对现有答案的贡献,我运行了相同的简单基准测试。
In [1]: import numpy as np
In [3]: X = np.random.randint(0, 10, (5, 5))
In [4]: X
Out[4]:
array([[7, 2, 7, 3, 7],
[8, 4, 5, 9, 6],
[0, 2, 9, 0, 4],
[8, 2, 1, 0, 3],
[3, 1, 0, 7, 0]])
In [5]: Y = X[:, ::-1]
In [6]: Z1 = np.diag(Y)
In [7]: Z1
Out[7]: array([7, 9, 9, 2, 3])
现在与当前给出的最快解决方案进行比较。
In [8]: step = len(X) - 1
In [9]: Z2 = np.take(X, np.arange(step, X.size-1, step))
In [10]: Z2
Out[10]: array([7, 9, 9, 2, 3])
In [11]: np.array_equal(Z1, Z2)
Out[11]: True
In [12]: %timeit np.diag(X[:, ::-1])
1.92 µs ± 29.5 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [13]: %timeit step = len(X) - 1; np.take(X, np.arange(step, X.size-1, step))
2.21 µs ± 246 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
最初的比较表明,我的解决方案的复杂度是线性的,而使用第二个“步骤”解决方案则不是:
In [14]: big_X = np.random.randint(0, 10, (10000, 10000))
In [15]: %timeit np.diag(big_X[:, ::-1])
2.15 µs ± 96.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [16]: %timeit step = len(big_X) - 1; np.take(big_X, np.arange(step, big_X.size-1, step))
100 µs ± 1.85 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
我通常使用这种方法来翻转图像(对它们进行镜像),或者在opencv
的(通道,高度,宽度)格式之间转换为matplotlib
(高度,宽度,通道)的格式。因此,对于三维图像,它就是flipped = image[:, :, ::-1]
。当然,您可以通过将::-1
零件放置在所需的尺寸中来概括其沿任意尺寸翻转。