我正在尝试创建具有多条垂直线的python程序,这些垂直线充当随机生成的点或“点”(在代码中引用)以随机度绘制直线的边界。如果直线与其中一个垂直“边界”相交,我想让它改变颜色。我有一张我想要实现的图片,这可能会更清楚地解释我的情况。我在下面发布的代码绘制了“垂直边界”,并在区域内随机生成了点,但这就是我被卡住的地方。
我的目标是实现:
我目前的代码:
setup(750,750)
screen_size = 750
max_coord = (screen_size - 30) / 2
### change the number of dots you have via that variable
num_dots = 500
bgcolor('yellow')
dot_size=5
reset() # Create an empty window
pi = Turtle()
hideturtle()
def parallel_lines(number):
pi.pensize(2)
pi.pencolor('black')
width = pi.window_width()
height = pi.window_height()
pi.setheading(90)
pi.penup()
pi.setposition(width/-2, height/-2)
for i in range(1, number +2):
pi.pendown()
pi.forward(height)
pi.penup()
pi.setposition(width/-2+i*(width/(number+1)),height/-2)
parallel_lines(7)
## centre turtle back in the middle of the page
goto(0,0)
### list to hold the dots
x_coords = []
y_coords = []
### Draw the dots via randomint
penup()
color("blue")
for dot_num in range(num_dots):
dot_pos_x = randint (-max_coord, max_coord)
dot_pos_y = randint (-max_coord, max_coord)
goto(dot_pos_x, dot_pos_y)
dot(dot_size)
x_coords.append(dot_pos_x)
y_coords.append(dot_pos_y)
done()
提前感谢任何有帮助的人。
答案 0 :(得分:2)
这是OP描述的程序的实现。如果有一个行交叉点,它使用Python 3 turtle的撤消功能删除该行并以其他颜色重绘:
from turtle import Turtle, Screen
from random import randint, randrange
SCREEN_SIZE = 750
PLANK_COUNT = 8
PINHEAD_SIZE = 5
FLOOR_COLOR = "yellow"
DEFAULT_COLOR = "blue"
CROSSING_COLOR = "red"
screen = Screen()
screen.setup(SCREEN_SIZE, SCREEN_SIZE)
screen.bgcolor(FLOOR_COLOR)
# configure numbers to replicate Lazzarini's setup
NUMBER_PINS = 3408
PIN_LENGTH = 78.125
PLANK_WIDTH = screen.window_width() / PLANK_COUNT
def parallel_lines(turtle, width, height):
turtle.penup()
turtle.setheading(90)
turtle.sety(height / -2)
x_coordinates = []
for i in range(PLANK_COUNT + 1):
x = i * PLANK_WIDTH - width / 2
turtle.setx(x)
turtle.pendown()
turtle.forward(height)
turtle.penup()
turtle.left(180)
x_coordinates.append(x)
return x_coordinates
pi = Turtle(visible=False)
pi.speed("fastest")
x_coordinates = parallel_lines(pi, screen.window_width(), screen.window_height())
def crosses(x0, x1, coordinates):
for coordinate in coordinates:
if x0 <= coordinate <= x1 or x1 <= coordinate <= x0:
return True
return False
previous_crossings = crossings = 0
max_coord = screen.window_width() / 2
for pin in range(NUMBER_PINS):
x0, y0 = randint(-max_coord, max_coord), randint(-max_coord, max_coord)
pi.color(DEFAULT_COLOR)
pi.goto(x0, y0)
pi.dot(PINHEAD_SIZE)
pi.setheading(randrange(360))
pi.pendown()
pi.forward(PIN_LENGTH)
if crosses(x0, pi.xcor(), x_coordinates):
pi.undo()
pi.color(CROSSING_COLOR)
pi.dot(PINHEAD_SIZE)
pi.forward(PIN_LENGTH)
crossings += 1
pi.penup()
if previous_crossings != crossings:
estimate = (2 * PIN_LENGTH * pin) / (PLANK_WIDTH * crossings)
print(estimate)
previous_crossings = crossings
screen.exitonclick()
现在剩下的故事了。 OP没有提到的是这是一张地板上的木板图,我们正在把它放在上面,跟踪如何地板上有许多交叉线,作为估算PI(π)值的一种方法!
了解详情Buffon's needle。要点是引脚穿过线的概率是PI的函数,因此我们可以转动方程式,丢弃实际(或虚拟)引脚,以估算PI。
程序根据目前为止删除的引脚将PI(π)的运行估计值输出到控制台:
...
3.121212121212121
3.1215970961887476
3.1370772946859904
3.134418324291742
3.131768953068592
3.1381381381381384
3.1384892086330933
3.1358467983243568
3.1451612903225805
3.1454979129397733
3.1458333333333335
3.1491384432560903
3.1465005931198102
3.1438721136767316
3.144208037825059
3.144542772861357
3.1419316843345113