我有一条从A点到B点的线;我有(x,y)这两点。我还有一个以B为中心的矩形以及矩形的宽度和高度。
我需要找到与矩形相交的直线上的点。是否有一个公式给出了那个点的(x,y)?
答案 0 :(得分:19)
A点始终位于矩形之外,B点始终位于矩形的中心
假设矩形是轴对齐的,这使事情变得非常简单:
线的斜率是s =(Ay-By)/(Ax-Bx)。
一旦你知道它相交的边缘就知道一个坐标:x = Bx±w / 2或y = By±h / 2,具体取决于你击中的边缘。另一个坐标由y = By + s * w / 2或x = Bx +(h / 2)/ s给出。
答案 1 :(得分:19)
您可能想要查看Graphics Gems - 这是一组经典的图形例程,包含许多所需的算法。尽管它在C语言中略显陈旧,但算法仍然闪烁,转换到其他语言应该是微不足道的。
对于您当前的问题,只需为矩形创建四条线,并查看与给定线相交的线。
答案 2 :(得分:13)
/**
* Finds the intersection point between
* * the rectangle
* with parallel sides to the x and y axes
* * the half-line pointing towards (x,y)
* originating from the middle of the rectangle
*
* Note: the function works given min[XY] <= max[XY],
* even though minY may not be the "top" of the rectangle
* because the coordinate system is flipped.
* Note: if the input is inside the rectangle,
* the line segment wouldn't have an intersection with the rectangle,
* but the projected half-line does.
* Warning: passing in the middle of the rectangle will return the midpoint itself
* there are infinitely many half-lines projected in all directions,
* so let's just shortcut to midpoint (GIGO).
*
* @param x:Number x coordinate of point to build the half-line from
* @param y:Number y coordinate of point to build the half-line from
* @param minX:Number the "left" side of the rectangle
* @param minY:Number the "top" side of the rectangle
* @param maxX:Number the "right" side of the rectangle
* @param maxY:Number the "bottom" side of the rectangle
* @param validate:boolean (optional) whether to treat point inside the rect as error
* @return an object with x and y members for the intersection
* @throws if validate == true and (x,y) is inside the rectangle
* @author TWiStErRob
* @licence Dual CC0/WTFPL/Unlicence, whatever floats your boat
* @see <a href="http://stackoverflow.com/a/31254199/253468">source</a>
* @see <a href="http://stackoverflow.com/a/18292964/253468">based on</a>
*/
function pointOnRect(x, y, minX, minY, maxX, maxY, validate) {
//assert minX <= maxX;
//assert minY <= maxY;
if (validate && (minX < x && x < maxX) && (minY < y && y < maxY))
throw "Point " + [x,y] + "cannot be inside "
+ "the rectangle: " + [minX, minY] + " - " + [maxX, maxY] + ".";
var midX = (minX + maxX) / 2;
var midY = (minY + maxY) / 2;
// if (midX - x == 0) -> m == ±Inf -> minYx/maxYx == x (because value / ±Inf = ±0)
var m = (midY - y) / (midX - x);
if (x <= midX) { // check "left" side
var minXy = m * (minX - x) + y;
if (minY <= minXy && minXy <= maxY)
return {x: minX, y: minXy};
}
if (x >= midX) { // check "right" side
var maxXy = m * (maxX - x) + y;
if (minY <= maxXy && maxXy <= maxY)
return {x: maxX, y: maxXy};
}
if (y <= midY) { // check "top" side
var minYx = (minY - y) / m + x;
if (minX <= minYx && minYx <= maxX)
return {x: minYx, y: minY};
}
if (y >= midY) { // check "bottom" side
var maxYx = (maxY - y) / m + x;
if (minX <= maxYx && maxYx <= maxX)
return {x: maxYx, y: maxY};
}
// edge case when finding midpoint intersection: m = 0/0 = NaN
if (x === midX && y === midY) return {x: x, y: y};
// Should never happen :) If it does, please tell me!
throw "Cannot find intersection for " + [x,y]
+ " inside rectangle " + [minX, minY] + " - " + [maxX, maxY] + ".";
}
(function tests() {
var left = 100, right = 200, top = 50, bottom = 150; // a square, really
var hMiddle = (left + right) / 2, vMiddle = (top + bottom) / 2;
function intersectTestRect(x, y) { return pointOnRect(x,y, left,top, right,bottom, true); }
function intersectTestRectNoValidation(x, y) { return pointOnRect(x,y, left,top, right,bottom, false); }
function checkTestRect(x, y) { return function() { return pointOnRect(x,y, left,top, right,bottom, true); }; }
QUnit.test("intersects left side", function(assert) {
var leftOfRect = 0, closerLeftOfRect = 25;
assert.deepEqual(intersectTestRect(leftOfRect, 25), {x:left, y:75}, "point above top");
assert.deepEqual(intersectTestRect(closerLeftOfRect, top), {x:left, y:80}, "point in line with top");
assert.deepEqual(intersectTestRect(leftOfRect, 70), {x:left, y:90}, "point above middle");
assert.deepEqual(intersectTestRect(leftOfRect, vMiddle), {x:left, y:100}, "point exact middle");
assert.deepEqual(intersectTestRect(leftOfRect, 130), {x:left, y:110}, "point below middle");
assert.deepEqual(intersectTestRect(closerLeftOfRect, bottom), {x:left, y:120}, "point in line with bottom");
assert.deepEqual(intersectTestRect(leftOfRect, 175), {x:left, y:125}, "point below bottom");
});
QUnit.test("intersects right side", function(assert) {
var rightOfRect = 300, closerRightOfRect = 250;
assert.deepEqual(intersectTestRect(rightOfRect, 25), {x:right, y:75}, "point above top");
assert.deepEqual(intersectTestRect(closerRightOfRect, top), {x:right, y:75}, "point in line with top");
assert.deepEqual(intersectTestRect(rightOfRect, 70), {x:right, y:90}, "point above middle");
assert.deepEqual(intersectTestRect(rightOfRect, vMiddle), {x:right, y:100}, "point exact middle");
assert.deepEqual(intersectTestRect(rightOfRect, 130), {x:right, y:110}, "point below middle");
assert.deepEqual(intersectTestRect(closerRightOfRect, bottom), {x:right, y:125}, "point in line with bottom");
assert.deepEqual(intersectTestRect(rightOfRect, 175), {x:right, y:125}, "point below bottom");
});
QUnit.test("intersects top side", function(assert) {
var aboveRect = 0;
assert.deepEqual(intersectTestRect(80, aboveRect), {x:115, y:top}, "point left of left");
assert.deepEqual(intersectTestRect(left, aboveRect), {x:125, y:top}, "point in line with left");
assert.deepEqual(intersectTestRect(120, aboveRect), {x:135, y:top}, "point left of middle");
assert.deepEqual(intersectTestRect(hMiddle, aboveRect), {x:150, y:top}, "point exact middle");
assert.deepEqual(intersectTestRect(180, aboveRect), {x:165, y:top}, "point right of middle");
assert.deepEqual(intersectTestRect(right, aboveRect), {x:175, y:top}, "point in line with right");
assert.deepEqual(intersectTestRect(220, aboveRect), {x:185, y:top}, "point right of right");
});
QUnit.test("intersects bottom side", function(assert) {
var belowRect = 200;
assert.deepEqual(intersectTestRect(80, belowRect), {x:115, y:bottom}, "point left of left");
assert.deepEqual(intersectTestRect(left, belowRect), {x:125, y:bottom}, "point in line with left");
assert.deepEqual(intersectTestRect(120, belowRect), {x:135, y:bottom}, "point left of middle");
assert.deepEqual(intersectTestRect(hMiddle, belowRect), {x:150, y:bottom}, "point exact middle");
assert.deepEqual(intersectTestRect(180, belowRect), {x:165, y:bottom}, "point right of middle");
assert.deepEqual(intersectTestRect(right, belowRect), {x:175, y:bottom}, "point in line with right");
assert.deepEqual(intersectTestRect(220, belowRect), {x:185, y:bottom}, "point right of right");
});
QUnit.test("intersects a corner", function(assert) {
assert.deepEqual(intersectTestRect(left-50, top-50), {x:left, y:top}, "intersection line aligned with top-left corner");
assert.deepEqual(intersectTestRect(right+50, top-50), {x:right, y:top}, "intersection line aligned with top-right corner");
assert.deepEqual(intersectTestRect(left-50, bottom+50), {x:left, y:bottom}, "intersection line aligned with bottom-left corner");
assert.deepEqual(intersectTestRect(right+50, bottom+50), {x:right, y:bottom}, "intersection line aligned with bottom-right corner");
});
QUnit.test("on the corners", function(assert) {
assert.deepEqual(intersectTestRect(left, top), {x:left, y:top}, "top-left corner");
assert.deepEqual(intersectTestRect(right, top), {x:right, y:top}, "top-right corner");
assert.deepEqual(intersectTestRect(right, bottom), {x:right, y:bottom}, "bottom-right corner");
assert.deepEqual(intersectTestRect(left, bottom), {x:left, y:bottom}, "bottom-left corner");
});
QUnit.test("on the edges", function(assert) {
assert.deepEqual(intersectTestRect(hMiddle, top), {x:hMiddle, y:top}, "top edge");
assert.deepEqual(intersectTestRect(right, vMiddle), {x:right, y:vMiddle}, "right edge");
assert.deepEqual(intersectTestRect(hMiddle, bottom), {x:hMiddle, y:bottom}, "bottom edge");
assert.deepEqual(intersectTestRect(left, vMiddle), {x:left, y:vMiddle}, "left edge");
});
QUnit.test("validates inputs", function(assert) {
assert.throws(checkTestRect(hMiddle, vMiddle), /cannot be inside/, "center");
assert.throws(checkTestRect(hMiddle-10, vMiddle-10), /cannot be inside/, "top left of center");
assert.throws(checkTestRect(hMiddle-10, vMiddle), /cannot be inside/, "left of center");
assert.throws(checkTestRect(hMiddle-10, vMiddle+10), /cannot be inside/, "bottom left of center");
assert.throws(checkTestRect(hMiddle, vMiddle-10), /cannot be inside/, "above center");
assert.throws(checkTestRect(hMiddle, vMiddle), /cannot be inside/, "center");
assert.throws(checkTestRect(hMiddle, vMiddle+10), /cannot be inside/, "below center");
assert.throws(checkTestRect(hMiddle+10, vMiddle-10), /cannot be inside/, "top right of center");
assert.throws(checkTestRect(hMiddle+10, vMiddle), /cannot be inside/, "right of center");
assert.throws(checkTestRect(hMiddle+10, vMiddle+10), /cannot be inside/, "bottom right of center");
assert.throws(checkTestRect(left+10, vMiddle-10), /cannot be inside/, "right of left edge");
assert.throws(checkTestRect(left+10, vMiddle), /cannot be inside/, "right of left edge");
assert.throws(checkTestRect(left+10, vMiddle+10), /cannot be inside/, "right of left edge");
assert.throws(checkTestRect(right-10, vMiddle-10), /cannot be inside/, "left of right edge");
assert.throws(checkTestRect(right-10, vMiddle), /cannot be inside/, "left of right edge");
assert.throws(checkTestRect(right-10, vMiddle+10), /cannot be inside/, "left of right edge");
assert.throws(checkTestRect(hMiddle-10, top+10), /cannot be inside/, "below top edge");
assert.throws(checkTestRect(hMiddle, top+10), /cannot be inside/, "below top edge");
assert.throws(checkTestRect(hMiddle+10, top+10), /cannot be inside/, "below top edge");
assert.throws(checkTestRect(hMiddle-10, bottom-10), /cannot be inside/, "above bottom edge");
assert.throws(checkTestRect(hMiddle, bottom-10), /cannot be inside/, "above bottom edge");
assert.throws(checkTestRect(hMiddle+10, bottom-10), /cannot be inside/, "above bottom edge");
});
QUnit.test("doesn't validate inputs", function(assert) {
assert.deepEqual(intersectTestRectNoValidation(hMiddle-10, vMiddle-10), {x:left, y:top}, "top left of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle-10, vMiddle), {x:left, y:vMiddle}, "left of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle-10, vMiddle+10), {x:left, y:bottom}, "bottom left of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle, vMiddle-10), {x:hMiddle, y:top}, "above center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle, vMiddle), {x:hMiddle, y:vMiddle}, "center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle, vMiddle+10), {x:hMiddle, y:bottom}, "below center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle+10, vMiddle-10), {x:right, y:top}, "top right of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle+10, vMiddle), {x:right, y:vMiddle}, "right of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle+10, vMiddle+10), {x:right, y:bottom}, "bottom right of center");
});
})();
&#13;
<link href="https://code.jquery.com/qunit/qunit-2.3.2.css" rel="stylesheet"/>
<script src="https://code.jquery.com/qunit/qunit-2.3.2.js"></script>
<div id="qunit"></div>
&#13;
答案 3 :(得分:8)
这是Java中的解决方案,如果线段(前4个参数)与轴对齐的矩形(最后4个参数)相交,则返回true。返回交叉点而不是布尔值将是微不足道的。它首先检查是否完全在外面,否则使用线方程y=m*x+b
。我们知道组成矩形的线是轴对齐的,因此检查很容易。
public boolean aabbContainsSegment (float x1, float y1, float x2, float y2, float minX, float minY, float maxX, float maxY) {
// Completely outside.
if ((x1 <= minX && x2 <= minX) || (y1 <= minY && y2 <= minY) || (x1 >= maxX && x2 >= maxX) || (y1 >= maxY && y2 >= maxY))
return false;
float m = (y2 - y1) / (x2 - x1);
float y = m * (minX - x1) + y1;
if (y > minY && y < maxY) return true;
y = m * (maxX - x1) + y1;
if (y > minY && y < maxY) return true;
float x = (minY - y1) / m + x1;
if (x > minX && x < maxX) return true;
x = (maxY - y1) / m + x1;
if (x > minX && x < maxX) return true;
return false;
}
如果片段的开头或结尾位于矩形内部,则可以快捷方式,但可能最好只进行数学运算,如果其中一个或两个片段末端都在内部,则总是返回true。如果您还想要快捷方式,请在“完全外部”检查后插入下面的代码。
// Start or end inside.
if ((x1 > minX && x1 < maxX && y1 > minY && y1 < maxY) || (x2 > minX && x2 < maxX && y2 > minY && y2 < maxY)) return true;
答案 4 :(得分:3)
我不会给你一个程序来做这件事,但是你可以这样做:
答案 5 :(得分:2)
我不是数学迷,也不喜欢翻译其他语言的东西,如果其他人已经这样做了,所以每当我完成一个无聊的翻译任务时,我都会把它添加到导致我去代码的文章中。为了防止任何人做双重工作。
因此,如果您想在C#中使用此交集代码,请查看http://dotnetbyexample.blogspot.nl/2013/09/utility-classes-to-check-if-lines-andor.html
答案 6 :(得分:2)
如果您计划使用相同的矩形测试多条线,您可以考虑的另一个选项是变换坐标系以使轴与矩形的对角线对齐。然后,由于您的线或光线从矩形的中心开始,您可以确定角度,然后您可以通过角度判断它将与哪个线段相交(即&lt; 90deg seg 1,90deg&lt;&lt; 180deg seg 2 etc ...) 。当然,你必须转换回原始坐标系
虽然这似乎更有效,但转换矩阵及其逆可以计算一次然后重复使用。这也可以更容易地扩展到更高维度的矩形,您必须考虑象限和交叉与3D中的面等等。
答案 7 :(得分:2)
这是一个适合我的解决方案。我假设矩形与轴对齐。
数据:
.p-3
现在将点A转换为矩形的中心,使矩形居中于O(0,0)并考虑第一季度的问题(即x> 0且y> 0)。
// Center of the Rectangle
let Cx: number
let Cy: number
// Width
let w: number
// Height
let h: number
// Other Point
let Ax: number
let Ay: number
答案 8 :(得分:1)
我不知道这是否是最好的方法,但你能做的是弄清楚矩形内部线条的比例。您可以从矩形的宽度和A和B的x坐标(或高度和y坐标)之间的差异得到它;根据宽度和高度,您可以检查哪种情况适用,另一种情况将在扩展名上矩形的一边)。如果你有这个,只需将矢量从B到A的比例,你有交点的坐标。
答案 9 :(得分:0)
这是一个稍微详细的方法,它仅使用基本数学返回(无限)直线和矩形之间的交集间隔:
// Line2 - 2D line with origin (= offset from 0,0) and direction
// Rectangle2 - 2D rectangle by min and max points
// Contacts - Stores entry and exit times of a line through a convex shape
Contacts findContacts(const Line2 &line, const Rectangle2 &rect) {
Contacts contacts;
// If the line is not parallel to the Y axis, find out when it will cross
// the limits of the rectangle horizontally
if(line.Direction.X != 0.0f) {
float leftTouch = (rect.Min.X - line.Origin.X) / line.Direction.X;
float rightTouch = (rect.Max.X - line.Origin.X) / line.Direction.X;
contacts.Entry = std::fmin(leftTouch, rightTouch);
contacts.Exit = std::fmax(leftTouch, rightTouch);
} else if((line.Offset.X < rect.Min.X) || (line.Offset.X >= rect.Max.X)) {
return Contacts::None; // Rectangle missed by vertical line
}
// If the line is not parallel to the X axis, find out when it will cross
// the limits of the rectangle vertically
if(line.Direction.Y != 0.0f) {
float topTouch = (rectangle.Min.Y - line.Offset.Y) / line.Direction.Y;
float bottomTouch = (rectangle.Max.Y - line.Offset.Y) / line.Direction.Y;
// If the line is parallel to the Y axis (and it goes through
// the rectangle), only the Y axis needs to be taken into account.
if(line.Direction.X == 0.0f) {
contacts.Entry = std::fmin(topTouch, bottomTouch);
contacts.Exit = std::fmax(topTouch, bottomTouch);
} else {
float verticalEntry = std::fmin(topTouch, bottomTouch);
float verticalExit = std::fmax(topTouch, bottomTouch);
// If the line already left the rectangle on one axis before entering it
// on the other, it has missed the rectangle.
if((verticalExit < contacts.Entry) || (contacts.Exit < verticalEntry)) {
return Contacts::None;
}
// Restrict the intervals from the X axis of the rectangle to where
// the line is also within the limits of the rectangle on the Y axis
contacts.Entry = std::fmax(verticalEntry, contacts.Entry);
contacts.Exit = std::fmin(verticalExit, contacts.Exit);
}
} else if((line.Offset.Y < rect.Min.Y) || (line.Offset.Y > rect.Max.Y)) {
return Contacts::None; // Rectangle missed by horizontal line
}
return contacts;
}
这种方法提供了高度的数值稳定性(在所有情况下,间隔都是单次减法和除法的结果),但涉及一些分支。
对于线段(包含起点和终点),您需要提供线段的起点作为原点和方向end - start
。计算两个交叉点的坐标很简单,只需entryPoint = origin + direction * contacts.Entry
和exitPoint = origin + direction * contacts.Exit
。
答案 10 :(得分:0)
让我们做一些假设:
给出了点
A
和C
,使它们定义了与传统轴对齐的矩形ABCD
。假设A
是左下角,C
是右上角( iexA < xC
和yA < yC
)。假定
X
和Y
是两个点,使得X
位于矩形内(即xA < xX < xC && yA < yX < yC
内 而Y位于 em>外部(即not(xA < xY < xC && yA < yY < yC)
。
这允许我们在线段E
和矩形[X,Y]
之间定义一个唯一交点∂ABCD
。
诀窍是寻找某个0 < t < 1
,以使t*Y+(1-t)*X
在矩形∂ABCD
上。通过将条件Γ(t) ∈ ABCD
重写为:
(xY - xX) * t ∈ [xA - xX, xC - xX]
和(yY - yX) * t ∈ [yA - yX, yC - yX]
现在可以展开所有方案。这样产生:
var t = 0;
if(xY == xX) {
t = max((yA - yX)/(yY - yX), (yC - yX)/(yY - yX));
} else {
if(yY == yX) {
t = max((xA - xX)/(xY - xX), (xC - xX)/(xY - xX));
} else {
if(xY > xX) {
if(yY > yX) {
t = min((xC - xX)/(xY - xX), (yC - yX)/(yY - yX));
} else {
t = min((xC - xX)/(xY - xX), (yA - yX)/(yY - yX));
}
} else {
if(yY > yX) {
t = min((xA - xX)/(xY - xX), (yC - yX)/(yY - yX));
} else {
t = min((xA - xX)/(xY - xX), (yA - yX)/(yY - yX));
}
}
}
}
xE = t * xY + (1 - t) * xX;
yE = t * yY + (1 - t) * yX;
答案 11 :(得分:0)
希望它 100% 有效
我也遇到了同样的问题。所以经过两天的努力,我终于创建了这个方法,
主方法,
enum Line
{
// Inside the Rectangle so No Intersection Point(Both Entry Point and Exit Point will be Null)
InsideTheRectangle,
// One Point Inside the Rectangle another Point Outside the Rectangle. So it has only Entry Point
Entry,
// Both Point Outside the Rectangle but Intersecting. So It has both Entry and Exit Point
EntryExit,
// Both Point Outside the Rectangle and not Intersecting. So doesn't has both Entry and Exit Point
NoIntersection
}
// Tuple<entryPoint, exitPoint, lineStatus>
private Tuple<Point, Point, Line> GetIntersectionPoint(Point a, Point b, Rectangle rect)
{
if (IsWithinRectangle(a, rect) && IsWithinRectangle(b, rect))
{
// Can't set null to Point that's why I am returning just empty object
return new Tuple<Point, Point, Line>(new Point(), new Point(), Line.InsideTheRectangle);
}
else if (!IsWithinRectangle(a, rect) && !IsWithinRectangle(b, rect))
{
if (!LineIntersectsRectangle(a, b, rect))
{
// Can't set null to Point that's why I am returning just empty object
return new Tuple<Point, Point, Line>(new Point(), new Point(), Line.NoIntersection);
}
Point entryPoint = new Point();
Point exitPoint = new Point();
bool entryPointFound = false;
// Top Line of Chart Area
if (LineIntersectsLine(a, b, new Point(0, 0), new Point(rect.Width, 0)))
{
entryPoint = GetPointFromYValue(a, b, 0);
entryPointFound = true;
}
// Right Line of Chart Area
if (LineIntersectsLine(a, b, new Point(rect.Width, 0), new Point(rect.Width, rect.Height)))
{
if (entryPointFound)
exitPoint = GetPointFromXValue(a, b, rect.Width);
else
{
entryPoint = GetPointFromXValue(a, b, rect.Width);
entryPointFound = true;
}
}
// Bottom Line of Chart
if (LineIntersectsLine(a, b, new Point(0, rect.Height), new Point(rect.Width, rect.Height)))
{
if (entryPointFound)
exitPoint = GetPointFromYValue(a, b, rect.Height);
else
{
entryPoint = GetPointFromYValue(a, b, rect.Height);
}
}
// Left Line of Chart
if (LineIntersectsLine(a, b, new Point(0, 0), new Point(0, rect.Height)))
{
exitPoint = GetPointFromXValue(a, b, 0);
}
return new Tuple<Point, Point, Line>(entryPoint, exitPoint, Line.EntryExit);
}
else
{
Point entryPoint = GetEntryIntersectionPoint(rect, a, b);
return new Tuple<Point, Point, Line>(entryPoint, new Point(), Line.Entry);
}
}
支持方法,
private Point GetEntryIntersectionPoint(Rectangle rect, Point a, Point b)
{
// For top line of the rectangle
if (LineIntersectsLine(new Point(0, 0), new Point(rect.Width, 0), a, b))
{
return GetPointFromYValue(a, b, 0);
}
// For right side line of the rectangle
else if (LineIntersectsLine(new Point(rect.Width, 0), new Point(rect.Width, rect.Height), a, b))
{
return GetPointFromXValue(a, b, rect.Width);
}
// For bottom line of the rectangle
else if (LineIntersectsLine(new Point(0, rect.Height), new Point(rect.Width, rect.Height), a, b))
{
return GetPointFromYValue(a, b, rect.Height);
}
// For left side line of the rectangle
else
{
return GetPointFromXValue(a, b, 0);
}
}
public bool LineIntersectsRectangle(Point p1, Point p2, Rectangle r)
{
return LineIntersectsLine(p1, p2, new Point(r.X, r.Y), new Point(r.X + r.Width, r.Y)) ||
LineIntersectsLine(p1, p2, new Point(r.X + r.Width, r.Y), new Point(r.X + r.Width, r.Y + r.Height)) ||
LineIntersectsLine(p1, p2, new Point(r.X + r.Width, r.Y + r.Height), new Point(r.X, r.Y + r.Height)) ||
LineIntersectsLine(p1, p2, new Point(r.X, r.Y + r.Height), new Point(r.X, r.Y)) ||
(r.Contains(p1) && r.Contains(p2));
}
private bool LineIntersectsLine(Point l1p1, Point l1p2, Point l2p1, Point l2p2)
{
float q = (l1p1.Y - l2p1.Y) * (l2p2.X - l2p1.X) - (l1p1.X - l2p1.X) * (l2p2.Y - l2p1.Y);
float d = (l1p2.X - l1p1.X) * (l2p2.Y - l2p1.Y) - (l1p2.Y - l1p1.Y) * (l2p2.X - l2p1.X);
if (d == 0)
{
return false;
}
float r = q / d;
q = (l1p1.Y - l2p1.Y) * (l1p2.X - l1p1.X) - (l1p1.X - l2p1.X) * (l1p2.Y - l1p1.Y);
float s = q / d;
if (r < 0 || r > 1 || s < 0 || s > 1)
{
return false;
}
return true;
}
// For Large values, processing with integer is not working properly
// So I here I am dealing only with double for high accuracy
private Point GetPointFromYValue(Point a, Point b, double y)
{
double x1 = a.X, x2 = b.X, y1 = a.Y, y2 = b.Y;
double x = (((y - y1) * (x2 - x1)) / (y2 - y1)) + x1;
return new Point((int)x, (int)y);
}
// For Large values, processing with integer is not working properly
// So here I am dealing only with double for high accuracy
private Point GetPointFromXValue(Point a, Point b, double x)
{
double x1 = a.X, x2 = b.X, y1 = a.Y, y2 = b.Y;
double y = (((x - x1) * (y2 - y1)) / (x2 - x1)) + y1;
return new Point((int)x, (int)y);
}
// rect.Contains(point) is not working properly in some cases.
// So here I created my own method
private bool IsWithinRectangle(Point a, Rectangle rect)
{
return a.X >= rect.X && a.X <= rect.X + rect.Width && a.Y >= rect.Y && a.Y <= rect.Y + rect.Height;
}