我使用R中kernlab软件包中的ksvm
函数训练支持向量机,对大量观察结果(300k)进行了很多特征(1-8)。我想使用生成的概率模型,但对于大型数据集,生成的概率模型具有意外的格式。
这是应该发生的事情:
n <- 1000
df <- data.frame(label=c(rep("x",n),rep("y",n)),value=c(runif(n),runif(n)+2))
m <- ksvm(label~value,df,prob.model=TRUE)
> prob.model(m)
[[1]]
[[1]]$A
[1] -6.836228
[[1]]$B
[1] 0.003163229
但是,对于n
的大值(例如100k;谨防高内存使用和长执行时间),prob.model(m)[[1]]
的值是长度为2n
的数字向量,看似df
中每次观察的可能性。什么可能导致这种情况?
会话信息:
R version 2.15.2 (2012-10-26)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=C LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] graphics grDevices datasets utils stats methods base
other attached packages:
[1] kernlab_0.9-16 e1071_1.6-1 class_7.3-5 data.table_1.8.8
loaded via a namespace (and not attached):
[1] tools_2.15.2
修改:这是我正在谈论的分类任务,df
具有以下形式:
label value
"x" 0.21
...
"x" -1.20
"y" 2.42
...
答案 0 :(得分:0)
问题的根源由以下错误消息指示:
line search fails
更具体的问题,包括我使用的原始数据框,在这里:Line search fails in training ksvm prob.model。