We use Ө-notation to write worst case running time of insertion sort. But I’m not able to relate properties of Ө-notation with insertion sort, why Ө-notation is suitable to insertion sort. How does the insertion sort function f(n), lies between the c1*n^2 and c2*n^2 for all n>=n0.
插入排序的运行时间为Ө(n ^ 2)意味着它具有上限O(n ^ 2)和下限Ω(n ^ 2)。我很困惑插入排序下限是Ω(n ^ 2)还是Ω(n)。
答案 0 :(得分:4)
使用Ө符号
如果任何函数具有相同的上限和下限,我们可以使用Ө-notation来描述它的时间复杂度。它的上限和下限可以用单一符号指定。它只是简单地讲述了函数的特性。
示例,
suppose we have a function ,
f(n) = 4logn + loglogn
we can write this function as
f(n) = Ө(logn)
Because its upper bound and lower bound
are O(logn) and Ω(logn) repectively, which are same
so it is legal to write this function as ,
f(n)= Ө(logn)
证明:
**Finding upper bound :**
f(n) = 4logn+loglogn
For all sufficience value of n>=2
4logn <= 4 logn
loglogn <= logn
Thus ,
f(n) = 4logn+loglogn <= 4logn+logn
<= 5logn
= O(logn) // where c1 can be 5 and n0 =2
**Finding lower bound :**
f(n) = 4logn+loglogn
For all sufficience value of n>=2
f(n) = 4logn+loglogn >= logn
Thus, f(n) = Ω(logn) // where c2 can be 1 and n0=2
so ,
f(n) = Ɵ(logn)
同样,在插入排序的情况下:
If running time of insertion sort is described by simple function f(n).
In particular , if f(n) = 2n^2+n+1 then
Finding upper bound:
for all sufficient large value of n>=1
2n^2<=2n^2 ------------------- (1)
n <=n^2 --------------------(2)
1 <=n^2 --------------------(3)
adding eq 1,2 and 3, we get.
2n^2+n+1<= 2n^2+n^2+n^2
that is
f(n)<= 4n^2
f(n) = O(n^2) where c=4 and n0=1
Finding lower bound:
for all sufficient large value of n>=1
2n^2+n^2+1 >= 2n^2
that is ,
f(n) >= 2n^2
f(n) = Ω(n^2) where c=2 and n0=1
because upper bound and lower bound are same,
f(n) = Ө(n^2)
if f(n)= 2n^2+n+1 then, c1*g(n) and c2*g(n) are presented by diagram:
在最坏的情况下,插入排序上限和下限是O(n ^ 2)和Ω(n ^ 2),因此在最坏的情况下,将插入排序的运行写为Ө(n)是合法的^ 2))强>
在最好的情况下,它将是Ө(n)。
答案 1 :(得分:1)
插入时间的最佳情况是Ө(n),最坏的情况是Ө(n ^ 2)。因此插入排序的运行时间为O(n ^ 2)而不是Ө(n ^ 2)。 O(n ^ 2)表示算法的运行时间应小于或等于n ^ 2,其中Ө(n ^ 2)表示它应该完全等于n ^ 2.
最坏的情况下运行时间永远不会小于Ө(n ^ 2)。我们使用Ө(n ^ 2)因为它更准确。
答案 2 :(得分:1)
插入排序时间“计算”复杂度:O(n ^ 2),Ω(n)
O(SUM{1..n}) = O(1/2 n(n+1)) = O(1/2 n^2 + 1/2 n)) ~ O(n^2)
Ө(SUM{1..(n/2)}) = Ө(1/8 n(n+2)) = Ө(1/8 n^2 + 1/4 n) ~ Ө(n^2)
这篇文章显示Gapped Insertion Sort是O(n log n),是插入排序的最佳版本:Gapped Insertion Sort
但是如果你正在寻找更快的排序算法,那么Counting Sort在最坏的情况下有时间:O(3n),当k = n(所有符号都是唯一的)时,空格:O(n)