多边形点的正投影从3D到2D用于UV映射

时间:2013-03-19 16:31:44

标签: c++ math orthographic xsi

我想使用简单的正交投影在平面上变换或投影多边形点的位置 - 用于UV贴图并被卡住 。 代码:

    CPolygonFaceRefArray lPolygons = lPolygonMesh.GetPolygons();

    for( long f=0; f < lPolygons.GetCount(); f++ )
    {
        PolygonFace lFace = lPolygons[ f ];
        CPointRefArray lPoints = lFace.GetPoints();

        Point lPoint1 = lPoints[ 0 ];
        Point lPoint2 = lPoints[ 1 ];
        Point lPoint3 = lPoints[ 2 ];

        CVector3 lPoint1Position = lPoint1.GetPosition();
        CVector3 lPoint2Position = lPoint2.GetPosition();
        CVector3 lPoint3Position = lPoint3.GetPosition();

        _LogValue2( f, L"--------------------------------------" );

        // Vector A->B, that becomes the X axis of the local plane.
        CVector3 lLocalX = lLocalX.Sub( lPoint1Position, lPoint2Position );
        lLocalX.NormalizeInPlace();

        // Vector A->C
        CVector3 lVector13 = lVector13.Sub( lPoint1Position, lPoint3Position );
        lVector13.NormalizeInPlace();

        // Determine the Z vector of the local plane:.
        CVector3 lLocalZ = lLocalZ.Cross( lLocalX, lVector13 );
        lLocalZ.NormalizeInPlace();

        // Determine Y vector of the local plane, assuming that it’s perpendicular to already known X and Z.
        CVector3 lLocalY = lLocalY.Cross( lLocalZ, lLocalX );
        lLocalY.NormalizeInPlace();

        // In result we got three axis of the local plane:
        // lLocalX.Dot( lLocalY ) == lLocalX.Dot( lLocalZ ) ==  lLocalY.Dot( lLocalZ ) == 0;

        /*
        Now use system of equations to determine the positions of all points in reference to the local plane.

        double GetBase(const double& a1, const double& b1, const double& c1, const double& a2, const double& b2, const double& c2, const double& a3, const double& b3, const double& c3 )
        {return (a1*b2*c3)+(a3*b1*c2)+(a2*b3*c1)-((a3*b2*c1)+(a1*b3*c2)+(a2*b1*c3));}

        double GetX(const double& a1, const double& b1, const double& c1, const double& d1, const double& a2, const double& b2, const double& c2, const double& d2, const double& a3, const double& b3, const double& c3, const double& d3, const double& in_Base)
        {return ( (d1*b2*c3)+(d2*b1*c2)+(d2*b3*c1)-((d3*b2*c1)+(d1*b3*c2)+(d2*b1*c3)) ) / in_Base;}

        double GetY(const double& a1, const double& b1, const double& c1, const double& d1, const double& a2, const double& b2, const double& c2, const double& d2, const double& a3, const double& b3, const double& c3, const double& d3, const double& in_Base)
        {return ( (a1*d2*c3)+(a3*d1*c2)+(a2*d3*c1)-((a3*d2*c1)+(a1*d3*c2)+(a2*b1*c3)) ) / in_Base;}

        double GetZ(const double& a1, const double& b1, const double& c1, const double& d1, const double& a2, const double& b2, const double& c2, const double& d2, const double& a3, const double& b3, const double& c3, const double& d3, const double& in_Base)
        {return ( (a1*b2*d3)+(a3*b1*d2)+(a2*b3*d1)-((a3*b2*d1)+(a1*b3*d2)+(a2*b1*d3)) ) / in_Base;}
        */

        double fU; 
        double fV; 
        double fW;
        double fBase;

        // For each point, except the first one (lPoint1Position), which we aleady know.

        for( long p=1; p < lPoints.GetCount(); p++ )
        {
            Point lPoint = lPoints[ p ];
            CVector3 lPointPosition = lPoint.GetPosition();
            CVector3 lPointVector = lPointVector.Sub( lPoint1Position, lPointPosition );

            fBase = GetBase( 
                        lLocalX.GetX(), lLocalY.GetX(), lLocalZ.GetX(),
                        lLocalX.GetY(), lLocalY.GetY(), lLocalZ.GetY(),
                        lLocalX.GetZ(), lLocalY.GetZ(), lLocalZ.GetZ() ); 

            fU = GetX( lLocalX.GetX(), lLocalY.GetX(), lLocalZ.GetX(), lPointVector.GetX(),
                       lLocalX.GetY(), lLocalY.GetY(), lLocalZ.GetY(), lPointVector.GetY(),
                       lLocalX.GetZ(), lLocalY.GetZ(), lLocalZ.GetZ(), lPointVector.GetZ()
                       ,fBase ); 

            fV = GetY( lLocalX.GetX(), lLocalY.GetX(), lLocalZ.GetX(), lPointVector.GetX(),
                       lLocalX.GetY(), lLocalY.GetY(), lLocalZ.GetY(), lPointVector.GetY(),
                       lLocalX.GetZ(), lLocalY.GetZ(), lLocalZ.GetZ(), lPointVector.GetZ()
                       ,fBase ); 

            fW = GetZ( lLocalX.GetX(), lLocalY.GetX(), lLocalZ.GetX(), lPointVector.GetX(),
                       lLocalX.GetY(), lLocalY.GetY(), lLocalZ.GetY(), lPointVector.GetY(),
                       lLocalX.GetZ(), lLocalY.GetZ(), lLocalZ.GetZ(), lPointVector.GetZ()
                       ,fBase ); 

            _LogRoundValue3( p, fU, fV, fW );
        }

        // Result for a cube with the center in 0,0,0 (global coords) is:
        // INFO : Values: 0, --------------------------------------
        // INFO : 1 = 0, 0, 0
        // INFO : 2 = 0, 1, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 1, --------------------------------------
        // INFO : 1 = 1, 1, 0
        // INFO : 2 = 1, 1, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 2, --------------------------------------
        // INFO : 1 = 1, 0, 0
        // INFO : 2 = 1, 1, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 3, --------------------------------------
        // INFO : 1 = 1, 0, 0
        // INFO : 2 = 1, 1, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 4, --------------------------------------
        // INFO : 1 = 1, 0, 0
        // INFO : 2 = 1, 1, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 5, --------------------------------------
        // INFO : 1 = 0, 0, 0
        // INFO : 2 = 0, 1, 0
        // INFO : 3 = 0, 1, 0

        // and for a rotated cube at the same place:
        // INFO : Values: 0, --------------------------------------
        // INFO : 1 = 0.027506, 0.033672, 0
        // INFO : 2 = 0.487751, 0.969746, 0
        // INFO : 3 = 0.460245, 1, 0
        // INFO : Values: 1, --------------------------------------
        // INFO : 1 = 1.15549, 0.753083, 0
        // INFO : 2 = 1.03428, 1, 0
        // INFO : 3 = -0.121205, 1, 0
        // INFO : Values: 2, --------------------------------------
        // INFO : 1 = 1, 0.04442, 0
        // INFO : 2 = 1, 1.04442, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 3, --------------------------------------
        // INFO : 1 = 1, -0.093859, 0
        // INFO : 2 = 1, 0.906141, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 4, --------------------------------------
        // INFO : 1 = 1, -0.04442, 0
        // INFO : 2 = 1, 0.95558, 0
        // INFO : 3 = 0, 1, 0
        // INFO : Values: 5, --------------------------------------
        // INFO : 1 = 0.027506, 0.09418, 0
        // INFO : 2 = -0.43274, 1.03025, 0
        // INFO : 3 = -0.460245, 1, 0
    }

它只是每个多边形投影而且我假设 - 并非总是如此,但并不重要 - 所有多边形点都在同一个局部平面上。

我开始确定局部平面很好,然后使用方程系统试图找到局部平面上点的坐标。但结果是错误的。

代码使用XSI的API,矢量类文档在这里:

http://download.autodesk.com/global/docs/softimage2013/en_us/sdkguide/index.html?url=si_cpp/classXSI_1_1MATH_1_1CVector3.html,topicNumber=si_cpp_classXSI_1_1MATH_1_1CVector3_html

  • 第一个问题是:这是一种正确的方法吗?
  • 如果是,那么它有什么问题?

...是的,我已阅读http://en.wikipedia.org/wiki/3D_projection:)

我很感激任何建议。

1 个答案:

答案 0 :(得分:1)

我建议您使用点积计算映射坐标:

fU = lPointVector.Dot(lLocalX);
fV = lPointVector.Dot(lLocalY);
fW = lPointVector.Dot(lLocalZ); // should be zero if points lie in plane

这将带您从3D坐标到2D,这似乎是您所要求的。如果没有,你应该澄清你的问题。