我一直在用Python编写自己的物理引擎作为物理和编程练习。我从遵循教程located here开始。这很顺利,但后来我找到了thomas jakobsen撰写的文章“高级角色物理”,其中介绍了使用Verlet集成进行模拟,我觉得这很有趣。
我一直在尝试使用verlet集成编写自己的基本物理模拟器,但事实证明它比我最初预期的要困难一些。我一直在浏览示例程序以便阅读,偶然发现this one written in Python,我还发现this tutorial使用了处理。
令人印象深刻的是,处理版本的运行速度有多快。单独的布料有2400个不同的点被模拟,而且不包括身体。
python示例仅使用256个粒子作为布料,并以每秒约30帧的速度运行。我尝试将粒子数增加到2401(该程序必须是正方形),它以大约3 fps的速度运行。
这两个工作都是通过将粒子对象的实例存储在列表中,然后遍历列表,调用每个粒子的“更新位置”方法。例如,这是Processing sketch中代码的一部分,用于计算每个粒子的新位置:
for (int i = 0; i < pointmasses.size(); i++) {
PointMass pointmass = (PointMass) pointmasses.get(i);
pointmass.updateInteractions();
pointmass.updatePhysics(fixedDeltaTimeSeconds);
}
编辑:以下是我之前链接的python版本的代码:
"""
verletCloth01.py
Eric Pavey - 2010-07-03 - www.akeric.com
Riding on the shoulders of giants.
I wanted to learn now to do 'verlet cloth' in Python\Pygame. I first ran across
this post \ source:
http://forums.overclockers.com.au/showthread.php?t=870396
http://dl.dropbox.com/u/3240460/cloth5.py
Which pointed to some good reference, that was a dead link. After some searching,
I found it here:
http://www.gpgstudy.com/gpgiki/GDC%202001%3A%20Advanced%20Character%20Physics
Which is a 2001 SIGGRAPH paper by Thomas Jakobsen called:
"GDC 2001: Advanced Characer Physics".
This code is a Python\Pygame interpretation of that 2001 Siggraph paper. I did
borrow some code from 'domlebo's source code, it was a great starting point. But
I'd like to think I put my own flavor on it.
"""
#--------------
# Imports & Initis
import sys
from math import sqrt
# Vec2D comes from here: http://pygame.org/wiki/2DVectorClass
from vec2d import Vec2d
import pygame
from pygame.locals import *
pygame.init()
#--------------
# Constants
TITLE = "verletCloth01"
WIDTH = 600
HEIGHT = 600
FRAMERATE = 60
# How many iterations to run on our constraints per frame?
# This will 'tighten' the cloth, but slow the sim.
ITERATE = 2
GRAVITY = Vec2d(0.0,0.05)
TSTEP = 2.8
# How many pixels to position between each particle?
PSTEP = int(WIDTH*.03)
# Offset in pixels from the top left of screen to position grid:
OFFSET = int(.25*WIDTH)
#-------------
# Define helper functions, classes
class Particle(object):
"""
Stores position, previous position, and where it is in the grid.
"""
def __init__(self, screen, currentPos, gridIndex):
# Current Position : m_x
self.currentPos = Vec2d(currentPos)
# Index [x][y] of Where it lives in the grid
self.gridIndex = gridIndex
# Previous Position : m_oldx
self.oldPos = Vec2d(currentPos)
# Force accumulators : m_a
self.forces = GRAVITY
# Should the particle be locked at its current position?
self.locked = False
self.followMouse = False
self.colorUnlocked = Color('white')
self.colorLocked = Color('green')
self.screen = screen
def __str__(self):
return "Particle <%s, %s>"%(self.gridIndex[0], self.gridIndex[1])
def draw(self):
# Draw a circle at the given Particle.
screenPos = (self.currentPos[0], self.currentPos[1])
if self.locked:
pygame.draw.circle(self.screen, self.colorLocked, (int(screenPos[0]),
int(screenPos[1])), 4, 0)
else:
pygame.draw.circle(self.screen, self.colorUnlocked, (int(screenPos[0]),
int(screenPos[1])), 1, 0)
class Constraint(object):
"""
Stores 'constraint' data between two Particle objects. Stores this data
before the sim runs, to speed sim and draw operations.
"""
def __init__(self, screen, particles):
self.particles = sorted(particles)
# Calculate restlength as the initial distance between the two particles:
self.restLength = sqrt(abs(pow(self.particles[1].currentPos.x -
self.particles[0].currentPos.x, 2) +
pow(self.particles[1].currentPos.y -
self.particles[0].currentPos.y, 2)))
self.screen = screen
self.color = Color('red')
def __str__(self):
return "Constraint <%s, %s>"%(self.particles[0], self.particles[1])
def draw(self):
# Draw line between the two particles.
p1 = self.particles[0]
p2 = self.particles[1]
p1pos = (p1.currentPos[0],
p1.currentPos[1])
p2pos = (p2.currentPos[0],
p2.currentPos[1])
pygame.draw.aaline(self.screen, self.color,
(p1pos[0], p1pos[1]), (p2pos[0], p2pos[1]), 1)
class Grid(object):
"""
Stores a grid of Particle objects. Emulates a 2d container object. Particle
objects can be indexed by position:
grid = Grid()
particle = g[2][4]
"""
def __init__(self, screen, rows, columns, step, offset):
self.screen = screen
self.rows = rows
self.columns = columns
self.step = step
self.offset = offset
# Make our internal grid:
# _grid is a list of sublists.
# Each sublist is a 'column'.
# Each column holds a particle object per row:
# _grid =
# [[p00, [p10, [etc,
# p01, p11,
# etc], etc], ]]
self._grid = []
for x in range(columns):
self._grid.append([])
for y in range(rows):
currentPos = (x*self.step+self.offset, y*self.step+self.offset)
self._grid[x].append(Particle(self.screen, currentPos, (x,y)))
def getNeighbors(self, gridIndex):
"""
return a list of all neighbor particles to the particle at the given gridIndex:
gridIndex = [x,x] : The particle index we're polling
"""
possNeighbors = []
possNeighbors.append([gridIndex[0]-1, gridIndex[1]])
possNeighbors.append([gridIndex[0], gridIndex[1]-1])
possNeighbors.append([gridIndex[0]+1, gridIndex[1]])
possNeighbors.append([gridIndex[0], gridIndex[1]+1])
neigh = []
for coord in possNeighbors:
if (coord[0] < 0) | (coord[0] > self.rows-1):
pass
elif (coord[1] < 0) | (coord[1] > self.columns-1):
pass
else:
neigh.append(coord)
finalNeighbors = []
for point in neigh:
finalNeighbors.append((point[0], point[1]))
return finalNeighbors
#--------------------------
# Implement Container Type:
def __len__(self):
return len(self.rows * self.columns)
def __getitem__(self, key):
return self._grid[key]
def __setitem__(self, key, value):
self._grid[key] = value
#def __delitem__(self, key):
#del(self._grid[key])
def __iter__(self):
for x in self._grid:
for y in x:
yield y
def __contains__(self, item):
for x in self._grid:
for y in x:
if y is item:
return True
return False
class ParticleSystem(Grid):
"""
Implements the verlet particles physics on the encapsulated Grid object.
"""
def __init__(self, screen, rows=49, columns=49, step=PSTEP, offset=OFFSET):
super(ParticleSystem, self).__init__(screen, rows, columns, step, offset)
# Generate our list of Constraint objects. One is generated between
# every particle connection.
self.constraints = []
for p in self:
neighborIndices = self.getNeighbors(p.gridIndex)
for ni in neighborIndices:
# Get the neighbor Particle from the index:
n = self[ni[0]][ni[1]]
# Let's not add duplicate Constraints, which would be easy to do!
new = True
for con in self.constraints:
if n in con.particles and p in con.particles:
new = False
if new:
self.constraints.append( Constraint(self.screen, (p,n)) )
# Lock our top left and right particles by default:
self[0][0].locked = True
self[1][0].locked = True
self[-2][0].locked = True
self[-1][0].locked = True
def verlet(self):
# Verlet integration step:
for p in self:
if not p.locked:
# make a copy of our current position
temp = Vec2d(p.currentPos)
p.currentPos += p.currentPos - p.oldPos + p.forces * TSTEP**2
p.oldPos = temp
elif p.followMouse:
temp = Vec2d(p.currentPos)
p.currentPos = Vec2d(pygame.mouse.get_pos())
p.oldPos = temp
def satisfyConstraints(self):
# Keep particles together:
for c in self.constraints:
delta = c.particles[0].currentPos - c.particles[1].currentPos
deltaLength = sqrt(delta.dot(delta))
try:
# You can get a ZeroDivisionError here once, so let's catch it.
# I think it's when particles sit on top of one another due to
# being locked.
diff = (deltaLength-c.restLength)/deltaLength
if not c.particles[0].locked:
c.particles[0].currentPos -= delta*0.5*diff
if not c.particles[1].locked:
c.particles[1].currentPos += delta*0.5*diff
except ZeroDivisionError:
pass
def accumulateForces(self):
# This doesn't do much right now, other than constantly reset the
# particles 'forces' to be 'gravity'. But this is where you'd implement
# other things, like drag, wind, etc.
for p in self:
p.forces = GRAVITY
def timeStep(self):
# This executes the whole shebang:
self.accumulateForces()
self.verlet()
for i in range(ITERATE):
self.satisfyConstraints()
def draw(self):
"""
Draw constraint connections, and particle positions:
"""
for c in self.constraints:
c.draw()
#for p in self:
# p.draw()
def lockParticle(self):
"""
If the mouse LMB is pressed for the first time on a particle, the particle
will assume the mouse motion. When it is pressed again, it will lock
the particle in space.
"""
mousePos = Vec2d(pygame.mouse.get_pos())
for p in self:
dist2mouse = sqrt(abs(pow(p.currentPos.x -
mousePos.x, 2) +
pow(p.currentPos.y -
mousePos.y, 2)))
if dist2mouse < 10:
if not p.followMouse:
p.locked = True
p.followMouse = True
p.oldPos = Vec2d(p.currentPos)
else:
p.followMouse = False
def unlockParticle(self):
"""
If the RMB is pressed on a particle, if the particle is currently
locked or being moved by the mouse, it will be 'unlocked'/stop following
the mouse.
"""
mousePos = Vec2d(pygame.mouse.get_pos())
for p in self:
dist2mouse = sqrt(abs(pow(p.currentPos.x -
mousePos.x, 2) +
pow(p.currentPos.y -
mousePos.y, 2)))
if dist2mouse < 5:
p.locked = False
#------------
# Main Program
def main():
# Screen Setup
screen = pygame.display.set_mode((WIDTH, HEIGHT))
clock = pygame.time.Clock()
# Create our grid of particles:
particleSystem = ParticleSystem(screen)
backgroundCol = Color('black')
# main loop
looping = True
while looping:
clock.tick(FRAMERATE)
pygame.display.set_caption("%s -- www.AKEric.com -- LMB: move\lock - RMB: unlock - fps: %.2f"%(TITLE, clock.get_fps()) )
screen.fill(backgroundCol)
# Detect for events
for event in pygame.event.get():
if event.type == pygame.QUIT:
looping = False
elif event.type == MOUSEBUTTONDOWN:
if event.button == 1:
# See if we can make a particle follow the mouse and lock
# its position when done.
particleSystem.lockParticle()
if event.button == 3:
# Try to unlock the current particles position:
particleSystem.unlockParticle()
# Do stuff!
particleSystem.timeStep()
particleSystem.draw()
# update our display:
pygame.display.update()
#------------
# Execution from shell\icon:
if __name__ == "__main__":
print "Running Python version:", sys.version
print "Running PyGame version:", pygame.ver
print "Running %s.py"%TITLE
sys.exit(main())
因为两个程序的工作方式大致相同,但Python版本的速度要慢得多,这让我很奇怪:
@Mr E在评论中链接了PyCon,以及@A。罗莎用链接资源回答所有这些都有助于更好地理解如何编写好的,快速的python代码。我现在正在为此页面添加书签以供将来参考:D
答案 0 :(得分:8)
在Python Wiki的Guido van Rossum's article部分中链接了Performance Tips。在结论中,您可以阅读以下句子:
如果您觉得需要速度,请选择内置功能 - 您无法击败用C语言编写的循环。
本文继续介绍循环优化指南。我推荐这两种资源,因为它们为优化Python代码提供了具体而实用的建议。
在benchmarksgame.alioth.debian.org中还有一组众所周知的基准测试,您可以在不同的机器中找到不同程序和语言之间的比较。可以看出,有许多变量在起作用,使得不可能的状态像 Java比Python 更快。这通常用句子总结为&#34;语言没有速度;实现&#34; 。
在您的代码中,可以使用内置函数应用更多pythonic和更快的替代方案。例如,有几个嵌套循环(其中一些不需要处理整个列表),可以使用imap
或list comprehensions重写。 PyPy也是提高性能的另一个有趣选择。我不是Python优化方面的专家,但有很多提示非常有用(请注意don't write Java in Python就是其中之一!)。
关于SO的资源和其他相关问题:
答案 1 :(得分:5)
如果你编写Python就像编写Java一样,当然它会变慢,惯用的java并不能很好地转换为惯用的python。
这种性能差异是Python本质的一部分吗? 如果我想从自己的Python程序中获得更好的性能,我应该做些什么?例如,将所有粒子的属性存储在数组中,而不是使用单个对象等。
很难说没有看到你的代码。
以下是python和java之间差异的不完整列表,有时可能会影响性能:
Processing使用立即模式画布,如果你想在Python中获得相似的性能,你还需要使用立即模式画布。大多数GUI框架(包括Tkinter画布)中的画布都是保留模式,它更易于使用,但本质上比立即模式慢。你需要像pygame,SDL或Pyglet那样使用即时模式画布。
Python是动态语言,这意味着在运行时解析实例成员访问,模块成员访问和全局变量访问。 python中的实例成员访问,模块成员访问和全局变量访问实际上是字典访问。在java中,它们在编译时被解析,并且其性质更快。将经常访问的全局变量,模块变量和属性缓存到局部变量。
在python 2.x中,range()生成一个具体的列表,在python中,使用迭代器for item in list
完成的迭代通常比使用迭代变量for n in range(len(list))
完成的迭代更快。您应该几乎总是使用迭代器直接迭代,而不是使用范围(len(...))进行迭代。
Python的数字是不可变的,这意味着任何算术计算都会分配一个新对象。这就是为什么普通python不适合低级计算的原因之一;大多数想要能够编写低级计算而不必求助于编写C扩展的人通常使用cython,psyco或numpy。当你有数百万的计算时,这通常只会成为一个问题。
这只是部分的,非常不完整的列表,还有许多其他原因,为什么将java转换为python会产生次优的代码。如果没有看到您的代码,就无法用不同的方式来判断您需要做什么。优化的python代码通常看起来与优化的java代码非常不同。
答案 2 :(得分:5)
我还建议阅读其他物理引擎。有一些开源引擎使用各种方法来计算“物理”。
还有大多数引擎的端口:
如果您仔细阅读这些引擎的文档,您会经常发现声明它们已针对速度进行优化(30fps - 60fps)。但如果你认为他们可以在计算“真实”物理时做到这一点你就错了。大多数引擎将物理学计算到普通用户无法在光学上区分“真实”物理行为和“模拟”物理行为的点。但是,如果您调查错误,如果您想编写游戏,则可忽略不计。但是如果你想做物理学,所有这些引擎对你都没有用。 这就是为什么我会说如果你正在做一个真正的物理模拟你比那些引擎设计慢,你永远不会超过另一个物理引擎。
答案 3 :(得分:0)
基于粒子的物理模拟很容易转化为线性代数运算,即。矩阵运算。 Numpy提供此类操作,这些操作在Fortran / C / C ++中实现。精心编写的python / Numpy代码(充分利用语言和库)可以编写相当快的代码。