我正在设计一个网格容器,表示为一维数组(模板化)。我在这里发布了代码的摘录,实际上还有更多内容。它在机器人应用中用作滚动占用网格,其中每个单元代表世界的一小部分区域。
我经常使用该网格进行的一项操作是遍历所有单元格并检索其世界坐标:
for( unsigned r=0; r<mygrid.rows_; ++r ) {
for( unsigned c=0; c<mygrid.cols_; ++c ) {
cell = mygrid.getRC(r,c);
mygrid.rcToXY(r,c,&x,&y);
}
}
我希望有一个迭代器而不是存储所有这些:单元格,它的rc坐标和它的xy坐标。
for( Grid<CellType>::const_iterator it=mygrid.begin(); it!=mygrid.end(); ++it ) {
cell = *it;
printf("%d %d %f %f\n", it.r(), it.c(), it.x(), it.y());
}
在网上发表了大量的答案和教程之后,我提出了以下实施方案。然而,对我来说这似乎有点笨拙,而且出于学术考虑,我想让它看起来更好看。 STL兼容性也很好。
template <class G, typename C>
class base_iterator
{
private:
G* grid_;
C* cell_;
unsigned r_, c_; // local
double x_, y_;
// this should be private with access for friends (Grid) only
// but I can't make it work
public:
base_iterator(G* grid, unsigned r, unsigned c) : grid_(grid), r_(r), c_(c)
{
cell_ = ( r<grid->rows_ && c<grid->cols_ ) ? &grid_->getRC(r,c) : 0;
grid_->rcToXY(r,c,&x_,&y_);
}
public:
base_iterator() : grid_(0) { }
// used to cast an iterator to a const_iterator
template <class G2, typename C2>
base_iterator(const base_iterator<G2,C2>& other)
{
grid_ = other.grid();
cell_ = & other.cell();
r_ = other.r();
c_ = other.c();
x_ = other.x();
y_ = other.y();
}
// this should be private with access for friends only
G* grid() const { return grid_; }
C& cell() { return *cell_; }
const C& cell() const { return *cell_; }
unsigned r() const { return r_; }
unsigned c() const { return c_; }
double x() const { return x_; }
double y() const { return y_; }
C* operator->() { return cell_; }
const C* operator->() const { return cell_; }
C& operator*() { return *cell_; }
const C& operator*() const { return *cell_; }
//prefix
base_iterator & operator++()
{
// my iteration logic here which needs access to grid
// in order to find the number of rows, etc.
return *this;
}
//postfix
base_iterator operator++(int)
{
base_iterator it(*this); // make a copy for result
++(*this); // Now use the prefix version to do the work
return it; // return the copy (the old) value.
}
template <class G2, typename C2>
bool operator==(const base_iterator<G2,C2> & other) const
{
return cell_ == &other.cell();
}
template <class G2, typename C2>
bool operator!=(const base_iterator<G2,C2>& other) const
{ return cell_!=other.cell(); }
};
然后在我的网格课程中:
typedef base_iterator<Grid<T>,T> iterator;
typedef base_iterator<Grid<T> const, T const> const_iterator;
iterator begin() { return iterator(this,0,0); }
iterator end() { return iterator(this,rows_,cols_); }
const_iterator begin() const { return const_iterator(this,0,0); }
const_iterator end() const { return const_iterator(this,rows_,cols_); }
同样,这有效,但我觉得它有点笨拙(请参阅迭代器代码中的注释),我想知道如何改进它。我看到很多关于使用boost迭代器外观或适配器的帖子,但我无法弄清楚如何使它适应我的情况。
答案 0 :(得分:1)
我找到了一个解决方案,我非常满意。这是完整的列表供参考。有些棘手的部分花了我一些时间,特别是为了能够在类声明之外进行实现。我没有设法让类base_iterator成为一个非嵌套的Grid类,根据我在这里和那里读到的内容,我认为这是不可能的。
#include <cstdio>
#include <cassert>
#include <stdexcept>
#include <algorithm>
template <class T>
class Grid
{
public:
// these should be private, with public getters...
double resolution_;
unsigned rows_, cols_;
int map_r0_, map_c0_; // grid coordinates of origin of map
private:
T* cell_;
public:
Grid(double resolution, unsigned rows, unsigned cols);
~Grid() { delete[] cell_; }
T & getRC(unsigned r, unsigned c);
const T & getRC(unsigned r, unsigned c) const;
void rcToXY(unsigned r, unsigned c, double* x, double* y) const;
public:
template <class GridType, class CellType>
class base_iterator : std::iterator<std::forward_iterator_tag, CellType>
{
private:
friend class Grid;
GridType* grid_;
CellType* cell_;
unsigned r_, c_; // local
double x_, y_;
base_iterator(GridType* grid, unsigned r, unsigned c);
public:
base_iterator() : grid_(0) { }
template <class G2, class C2>
base_iterator(const base_iterator<G2,C2>& other);
CellType& cell() { return *cell_; }
const CellType& cell() const { return *cell_; }
unsigned r() const { return r_; }
unsigned c() const { return c_; }
double x() const { return x_; }
double y() const { return y_; }
CellType* operator->() { return cell_; }
const CellType* operator->() const { return cell_; }
CellType& operator*() { return *cell_; }
const CellType& operator*() const { return *cell_; }
//prefix
base_iterator & operator++();
//postfix
base_iterator operator++(int);
template <class G2, class C2>
bool operator==(const base_iterator<G2,C2> & other) const
{ return cell_ == other.cell_; }
template <class G2, class C2>
bool operator!=(const base_iterator<G2,C2>& other) const
{ return cell_ != other.cell_; }
};
typedef base_iterator<Grid<T>,T> iterator;
typedef base_iterator<Grid<T> const, T const> const_iterator;
iterator begin() { return iterator(this,0,0); }
iterator end() { return iterator(this,rows_,0); }
const_iterator begin() const { return const_iterator(this,0,0); }
const_iterator end() const { return const_iterator(this,rows_,0); }
};
template <class T>
Grid<T>::Grid(double resolution, unsigned rows, unsigned cols)
: resolution_(resolution), rows_(rows), cols_(cols), map_r0_(0), map_c0_(0)
{
cell_ = new T[rows_*cols_];
}
template <class T>
T & Grid<T>::getRC(unsigned r, unsigned c)
{
if (r >= rows_ || c >= cols_)
throw std::runtime_error("Out of bounds");
return cell_[r * cols_ + c];
}
template <class T>
const T & Grid<T>::getRC(unsigned r, unsigned c) const
{
if (r >= rows_ || c >= cols_)
throw std::runtime_error("Out of bounds");
return cell_[r * cols_ + c];
}
template <class T>
void Grid<T>::rcToXY(unsigned r, unsigned c, double* x, double* y) const
{
*x = (map_c0_ + c + 0.5) * resolution_;
*y = (map_r0_ + r + 0.5) * resolution_;
}
template <class T>
template <class GridType, class CellType>
Grid<T>::base_iterator<GridType,CellType>::base_iterator(GridType* grid, unsigned r, unsigned c)
: grid_(grid), r_(r), c_(c)
{
if( r<grid->rows_ && c<grid->cols_ ) {
cell_ = &grid_->getRC(r,c);
grid_->rcToXY(r,c,&x_,&y_);
}
else
cell_ = &grid_->getRC(grid->rows_-1,grid->cols_-1) + 1;
}
// beautiful triple template declaration !
template <class T>
template <class GridType, class CellType>
template <class G2, class C2>
Grid<T>::base_iterator<GridType,CellType>::base_iterator(const Grid<T>::base_iterator<G2,C2>& other)
{
grid_ = other.grid_;
cell_ = other.cell_;
r_ = other.r();
c_ = other.c();
x_ = other.x();
y_ = other.y();
}
template <class T>
template <class GridType, class CellType>
Grid<T>::base_iterator<GridType,CellType> & Grid<T>::base_iterator<GridType,CellType>::operator++()
{
assert( grid_!=0 );
if( c_==grid_->cols_-1 )
{
c_ = 0;
x_ = (grid_->map_c0_ + 0.5) * grid_->resolution_;
++r_;
y_ += grid_->resolution_;
}
else
{
++c_;
x_ += grid_->resolution_;
}
++cell_;
return *this;
}
template <class T>
template <class GridType, class CellType>
Grid<T>::base_iterator<GridType,CellType> Grid<T>::base_iterator<GridType,CellType>::operator++(int)
{
base_iterator it(*this); // make a copy for result
++(*this); // Now use the prefix version to do the work
return it; // return the copy (the old) value.
}
void print(unsigned i)
{
printf("%d ", i);
}
int main()
{
Grid<unsigned> mygrid(.1,2,3);
unsigned ctr=0;
for( Grid<unsigned>::iterator it=mygrid.begin(); it!=mygrid.end(); ++it )
*it = ctr++;
ctr = 0;
printf("All elements: r, c, x, y, value\n");
for( Grid<unsigned>::const_iterator it=mygrid.begin(); it!=mygrid.end(); ++it ) {
assert( *it == ctr++ );
printf("%d %d %f %f %d\n", it.r(), it.c(), it.x(), it.y(), *it);
}
printf("All elements values: ");
std::for_each(mygrid.begin(), mygrid.end(), print);
printf("\n");
return 0;
}