如何在R中使用小波变换实现时间序列数据的ARX(AutoRegressive with Exogenous)模型?

时间:2013-02-28 05:42:46

标签: r wavelet

我想建立一个ARX模型的时间序列数据。数据如下:

Time             Volume
00:00hr          4632131
01:00hr          4564653
02:00hr          6313986
.......          .......
.......          .......
23:00hr          7986456

任何人都可以帮助我解决上述问题。 上述时间序列的外生输入是:

-644691181
-121187080
353422690
417492115
-504192375
420646272
-47480551
260350503
2151074145
1251550732
788874753
540183268
396739715
948170766
-1433091907
-148444555
-840182654
-893652578
-1738734435
-1431476210
24974246
93873803
-324033231
479813749

1 个答案:

答案 0 :(得分:1)

我使用fastVAR包。我不是一个精通时间序列的人,所以我不能确定这一点。

exos <- c(-644691181, -121187080, 353422690, 417492115, -504192375, 420646272, 
  -47480551, 260350503, 2151074145, 1251550732, 788874753, 540183268, 
  396739715, 948170766, -1433091907, -148444555, -840182654, -893652578, 
  -1738734435, -1431476210, 24974246, 93873803, -324033231, 479813749
)

dat <- sample(4632131:100000,24 )
library(fastVAR)
fastVARX(matrix(dat),matrix(exos),3,2,getdiag=FALSE)
Call:
lm(formula = varxz$y.p ~ varxz$Z)

Coefficients:
(Intercept)   varxz$Z.l1   varxz$Z.l2   varxz$Z.l3   varxz$Z.l1   varxz$Z.l2  
  4.642e+06   -2.182e-01   -2.607e-01   -4.587e-01    2.963e-04   -3.743e-04