我有XMVector3AngleBetweenVectors函数的奇怪结果。请考虑以下代码:
float angle = XMConvertToDegrees(XMVectorGetX(
XMVector3AngleBetweenVectors(GMathFV(XMFLOAT3(0.0f, 100.0f, 0.0f)),
GMathFV(XMFLOAT3(0.0f, 200.0f, 0.0f)))));
它正在寻找两个3D矢量之间的角度,由XMFLOAT3结构描述。 GMathFV是用户定义的函数,它将XMFLOAT3转换为XMVECTOR,如下所示:
inline XMVECTOR GMathFV(XMFLOAT3& val)
{
return XMLoadFloat3(&val);
}
其他一切都是directxmath.h库。这里一切都很好,结果角度是0.00000就像预期的那样。
但对于具有负y轴值的其他矢量,例如:
float angle = XMConvertToDegrees(XMVectorGetX(
XMVector3AngleBetweenVectors(GMathFV(XMFLOAT3(0.0f, -100.0f, 0.0f)),
GMathFV(XMFLOAT3(0.0f, -99.0f, 0.0f)))));
结果是0.0197823402,我很难称之为零角度。
请有人帮我解决问题。它是负数精度,太近的矢量坐标还是其他东西?
UPD:很棒,但a(0.0f, 100.0f, 0.0f) x b(0.0f, 99.0f, 0.0f)
给出0.0197823402,a(0.0f, 101.0f, 0.0f) x b(0.0f, 100.0f, 0.0f)
给出0.000000
答案 0 :(得分:3)
DirectXMath专为32位浮点数学而设计。您看到floating point error升级了。这是XMVector3AngleBetweenVectors的定义。
inline XMVECTOR XM_CALLCONV XMVector3AngleBetweenVectors(FXMVECTOR V1, FXMVECTOR V2)
{
XMVECTOR L1 = XMVector3ReciprocalLength(V1);
XMVECTOR L2 = XMVector3ReciprocalLength(V2);
XMVECTOR Dot = XMVector3Dot(V1, V2);
L1 = XMVectorMultiply(L1, L2);
XMVECTOR CosAngle = XMVectorMultiply(Dot, L1);
CosAngle = XMVectorClamp(CosAngle, g_XMNegativeOne.v, g_XMOne.v);
return XMVectorACos(CosAngle);
}
在你的第一个例子中,CosAngle等于1.000000000
在你的第二个例子中,CosAngle等于0.999999940
XMVectorACos(0.999999940)= 0.000345266977
这个大误差来自ACos的多项式近似。通常,您应该尽可能避免使用三角反演。它们很慢而且很吵。这是定义,因此您可以了解其大小。
inline XMVECTOR XM_CALLCONV XMVectorACos (FXMVECTOR V)
{
__m128 nonnegative = _mm_cmpge_ps(V, g_XMZero);
__m128 mvalue = _mm_sub_ps(g_XMZero, V);
__m128 x = _mm_max_ps(V, mvalue); // |V|
// Compute (1-|V|), clamp to zero to avoid sqrt of negative number.
__m128 oneMValue = _mm_sub_ps(g_XMOne, x);
__m128 clampOneMValue = _mm_max_ps(g_XMZero, oneMValue);
__m128 root = _mm_sqrt_ps(clampOneMValue); // sqrt(1-|V|)
// Compute polynomial approximation
const XMVECTOR AC1 = g_XMArcCoefficients1;
XMVECTOR vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(3, 3, 3, 3) );
__m128 t0 = _mm_mul_ps(vConstants, x);
vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(2, 2, 2, 2) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(1, 1, 1, 1) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC1, _MM_SHUFFLE(0, 0, 0, 0) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
const XMVECTOR AC0 = g_XMArcCoefficients0;
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(3, 3, 3, 3) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(2, 2, 2, 2) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(1, 1, 1, 1) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, x);
vConstants = XM_PERMUTE_PS( AC0, _MM_SHUFFLE(0, 0, 0, 0) );
t0 = _mm_add_ps(t0, vConstants);
t0 = _mm_mul_ps(t0, root);
__m128 t1 = _mm_sub_ps(g_XMPi, t0);
t0 = _mm_and_ps(nonnegative, t0);
t1 = _mm_andnot_ps(nonnegative, t1);
t0 = _mm_or_ps(t0, t1);
return t0;
}