在python中重新调整亲和力传播和DBSCAN集群算法的值?

时间:2013-02-08 15:38:06

标签: data-mining cluster-analysis scikit-learn dbscan rescale

我在scikit learn(python)中尝试了2个集群算法:亲和传播和像这里的DBSCAN:

http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#example-cluster-plot-dbscan-py

http://scikit-learn.org/0.12/auto_examples/cluster/plot_affinity_propagation.html

唯一的区别是X,不是:

centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,
    random_state=0)

但我的2张图片的特征(坚固性和第一次幽默)每75张图片:

>>>>X.shape  
(75,2)

我的功能:

[[  5.54680144e-01   3.79948392e-01]
[  8.70443729e-01   1.77502207e-01]
[  4.37622956e-01   2.83559236e-05]
[  6.72172924e-01   3.00142568e-04]
[  5.18932433e-01   1.39958013e-03]
[  7.23982700e-01   5.24452603e-04]
[  4.95001469e-01   2.95420975e-03]
[  1.64133952e-01   7.88177340e-04]
[  2.52497558e-01   4.91686002e-01]
[  6.86538731e-01   4.55305317e-01]
[  7.22193099e-01   4.80662983e-01]
[  4.67890677e-01   7.09454979e-03]
[  6.18924155e-01   1.07420039e-04]
[  3.53696287e-01   3.93981592e-03]
[  6.07385501e-01   1.06825487e-02]
[  2.84123395e-01   6.52089407e-01]
[  2.36429649e-01   3.27600328e-03]
[  2.30763588e-01   4.83091787e-03]
[  1.59765027e-01   2.78884462e-02]
[  1.86748975e-01   9.09235560e-05]
[  5.34793573e-01   3.76842998e-04]
[  5.05045881e-01   4.88897253e-01]
[  2.10951780e-01   3.02640539e-04]
[  1.23797482e+00   1.32727245e-01]
[  5.58317299e-01   4.41987578e-01]
[  4.35031459e-01   3.83944154e-03]
[  9.40625702e-01   9.31836183e-05]
[  8.40339071e-01   1.33191263e-04]
[  2.01581656e-01   4.10607399e-01]
[  2.70476981e-01   1.40600316e-01]
[  3.99294959e-01   1.62107396e-03]
[  3.46751951e-01   2.02122284e-03]
[  1.66176385e-01   1.71828687e-04]
[  3.28497515e-01   7.21117062e-02]
[  3.40640083e-01   5.52515091e-01]
[  8.38141960e-01   2.64894985e-01]
[  4.68464960e-01   3.36463731e-01]
...

我有两个相反的回应:

找到了75个用于亲和力的聚类

为dbscan找到了1个群集。

也许我要重新调整数值或者还有其他事可做?

0 个答案:

没有答案