我有一个DataFrame,在一些分组后创建了一个MultiIndex:
import numpy as np
import pandas as p
from numpy.random import randn
df = p.DataFrame({
'A' : ['a1', 'a1', 'a2', 'a3']
, 'B' : ['b1', 'b2', 'b3', 'b4']
, 'Vals' : randn(4)
}).groupby(['A', 'B']).sum()
df
Output> Vals
Output> A B
Output> a1 b1 -1.632460
Output> b2 0.596027
Output> a2 b3 -0.619130
Output> a3 b4 -0.002009
如何将一个级别添加到MultiIndex,以便将其转换为:
Output> Vals
Output> FirstLevel A B
Output> Foo a1 b1 -1.632460
Output> b2 0.596027
Output> a2 b3 -0.619130
Output> a3 b4 -0.002009
答案 0 :(得分:94)
您可以先将其添加为普通列,然后将其附加到当前索引,这样:
df['Firstlevel'] = 'Foo'
df.set_index('Firstlevel', append=True, inplace=True)
如果需要,可以通过以下方式更改订单:
df.reorder_levels(['Firstlevel', 'A', 'B'])
结果是:
Vals
Firstlevel A B
Foo a1 b1 0.871563
b2 0.494001
a2 b3 -0.167811
a3 b4 -1.353409
答案 1 :(得分:83)
使用pandas.concat()
在一行中执行此操作的好方法:
import pandas as pd
pd.concat([df], keys=['Foo'], names=['Firstlevel'])
这可以推广到许多数据框,请参阅docs。
答案 2 :(得分:2)
我用cxrodgers answer做了一个小功能,恕我直言,IMHO是最好的解决方案,因为它完全在索引上工作,而与任何数据帧或序列无关。
我添加了一个修复程序:to_frame()
方法将为没有索引级别的索引级别发明新的名称。这样,新索引将具有旧索引中不存在的名称。我添加了一些代码来还原此名称更改。
下面是代码,我已经使用了一段时间,它似乎工作正常。如果您发现任何问题或极端情况,我将不得不调整答案。
import pandas as pd
def _handle_insert_loc(loc: int, n: int) -> int:
"""
Computes the insert index from the right if loc is negative for a given size of n.
"""
return n + loc + 1 if loc < 0 else loc
def add_index_level(old_index: pd.Index, value: Any, name: str = None, loc: int = 0) -> pd.MultiIndex:
"""
Expand a (multi)index by adding a level to it.
:param old_index: The index to expand
:param name: The name of the new index level
:param value: Scalar or list-like, the values of the new index level
:param loc: Where to insert the level in the index, 0 is at the front, negative values count back from the rear end
:return: A new multi-index with the new level added
"""
loc = _handle_insert_loc(loc, len(old_index.names))
old_index_df = old_index.to_frame()
old_index_df.insert(loc, name, value)
new_index_names = list(old_index.names) # sometimes new index level names are invented when converting to a df,
new_index_names.insert(loc, name) # here the original names are reconstructed
new_index = pd.MultiIndex.from_frame(old_index_df, names=new_index_names)
return new_index
它通过了以下单元测试代码:
import unittest
import numpy as np
import pandas as pd
class TestPandaStuff(unittest.TestCase):
def test_add_index_level(self):
df = pd.DataFrame(data=np.random.normal(size=(6, 3)))
i1 = add_index_level(df.index, "foo")
# it does not invent new index names where there are missing
self.assertEqual([None, None], i1.names)
# the new level values are added
self.assertTrue(np.all(i1.get_level_values(0) == "foo"))
self.assertTrue(np.all(i1.get_level_values(1) == df.index))
# it does not invent new index names where there are missing
i2 = add_index_level(i1, ["x", "y"]*3, name="xy", loc=2)
i3 = add_index_level(i2, ["a", "b", "c"]*2, name="abc", loc=-1)
self.assertEqual([None, None, "xy", "abc"], i3.names)
# the new level values are added
self.assertTrue(np.all(i3.get_level_values(0) == "foo"))
self.assertTrue(np.all(i3.get_level_values(1) == df.index))
self.assertTrue(np.all(i3.get_level_values(2) == ["x", "y"]*3))
self.assertTrue(np.all(i3.get_level_values(3) == ["a", "b", "c"]*2))
# df.index = i3
# print()
# print(df)
答案 3 :(得分:0)
我认为这是一个更通用的解决方案:
# Convert index to dataframe
old_idx = df.index.to_frame()
# Insert new level at specified location
old_idx.insert(0, 'new_level_name', new_level_values)
# Convert back to MultiIndex
df.index = pandas.MultiIndex.from_frame(old_idx)
答案 4 :(得分:0)
如何使用pandas.MultiIndex.from_tuples从头开始构建它?
df.index = p.MultiIndex.from_tuples(
[(nl, A, B) for nl, (A, B) in
zip(['Foo'] * len(df), df.index)],
names=['FirstLevel', 'A', 'B'])
类似于cxrodger's solution,这是一种灵活的方法,避免了为数据帧修改基础数组。