添加新的多索引级别

时间:2019-05-21 11:03:01

标签: python pandas

我有一个DataFrame:

d = pd.DataFrame({'i1': ['A', 'B', 'C', 'D', 'E'],
                  'i2': ['I', 'II', 'III', 'IV', 'V'],
                  'val': ["lol1", "lol2", "lol3", "lol4", "lol5"]}).set_index(["i1", "i2"])
         val
i1 i2       
A  I    lol1
B  II   lol2
C  III  lol3
D  IV   lol4
E  V    lol5

我需要使用熊猫API从值i3添加新的索引级别[5, 10, 15]

            val
i1 i2  i3      
A  I   5   lol1
       10  lol1
       15  lol1
B  II  5   lol2
       10  lol2
       15  lol2
C  III 5   lol3
       10  lol3
       15  lol3
D  IV  5   lol4
       10  lol4
       15  lol4
E  V   5   lol5
       10  lol5
       15  lol5

我的尝试(丑陋):

d = np.repeat(d.reset_index().values, 3, 0)

i3 = [5, 10, 15]
r2 = np.tile(i3, 5)

r = np.concatenate([d, r2.reshape(-1, 1)], 1)

d = pd.DataFrame(r, columns=["i1", "i2", "val", "i3"])
d = d.set_index(["i1", "i2", "i3"])

此外,我一直在寻找pd.MultiIndex.from_product,但是无论我做什么,它都会从i1i2组合而成。

1 个答案:

答案 0 :(得分:3)

根据MultiIndex中的值创建元组列表,然后将DataFrame.reindexMultiIndex.from_tuples结合使用:

vals = [5, 10, 15]
tups = [x + (i,) for x in d.index for i in vals]
d = d.reindex(pd.MultiIndex.from_tuples(tups, names=['i1','i2','i3']))
print (d)
            val
i1 i2  i3      
A  I   5   lol1
       10  lol1
       15  lol1
B  II  5   lol2
       10  lol2
       15  lol2
C  III 5   lol3
       10  lol3
       15  lol3
D  IV  5   lol4
       10  lol4
       15  lol4
E  V   5   lol5
       10  lol5
       15  lol5