如何在Numpy / Scipy中获得平面向量的正交距离?

时间:2013-01-31 18:36:16

标签: python numpy scipy distance orthogonal

我有一组矢量作为numpy数组。我需要从由2个向量v1和v2定义的平面中获得每个正交距离。我可以使用Gram-Schmidt过程轻松地获得单个载体。有没有办法快速完成许多向量,而不必遍历每个向量,或使用np.vectorize?

谢谢!

3 个答案:

答案 0 :(得分:4)

你需要构建平面的单位法线:

在三个方面,这很容易做到:

nhat=np.cross( v1, v2 )
nhat=nhat/np.sqrt( np.dot( nhat,nhat) )

然后用你的每个向量点对此;我假设是一个Nx3矩阵M

result=np.zeros( M.shape[0], dtype=M.dtype )
for idx in xrange( M.shape[0] ):
    result[idx]=np.abs(np.dot( nhat, M[idx,:] ))

因此result[idx]idx'th向量与平面的距离。

答案 1 :(得分:4)

一种更明确的方式来实现@ Jaime的答案,你可以明确指出投影算子的构造:

def normalized(v):
    return v/np.sqrt( np.dot(v,v))
def ortho_proj_vec(v, uhat ):
    '''Returns the projection of the vector v  on the subspace
    orthogonal to uhat (which must be a unit vector) by subtracting off
    the appropriate multiple of uhat.
    i.e. dot( retval, uhat )==0
    '''
    return v-np.dot(v,uhat)*uhat

def ortho_proj_array( Varray, uhat ):
     ''' Compute the orhogonal projection for an entire array of vectors.
     @arg Varray:  is an array of vectors, each row is one vector
          (i.e. Varray.shape[1]==len(uhat)).
     @arg uhat: a unit vector
     @retval : an array (same shape as Varray), where each vector
               has had the component parallel to uhat removed.
               postcondition: np.dot( retval[i,:], uhat) ==0.0
               for all i. 
    ''' 
    return Varray-np.outer( np.dot( Varray, uhat), uhat )




# We need to ensure that the vectors defining the subspace are unit norm
v1hat=normalized( v1 )

# now to deal with v2, we need to project it into the subspace
# orhogonal to v1, and normalize it
v2hat=normalized( ortho_proj(v2, v1hat ) )
# TODO: if np.dot( normalized(v2), v1hat) ) is close to 1.0, we probably
# have an ill-conditioned system (the vectors are close to parallel)



# Act on each of your data vectors with the projection matrix,
# take the norm of the resulting vector.
result=np.zeros( M.shape[0], dtype=M.dtype )
for idx in xrange( M.shape[0] ):
    tmp=ortho_proj_vec( ortho_proj_vec(M[idx,:], v1hat), v2hat )             
    result[idx]=np.sqrt(np.dot(tmp,tmp))

 # The preceeding loop could be avoided via
 #tmp=orhto_proj_array( ortho_proj_array( M, v1hat), v2hat )
 #result=np.sum( tmp**2, axis=-1 )
 # but this results in many copies of matrices that are the same 
 # size as M, so, initially, I prefer the loop approach just on
 # a memory usage basis.

这实际上只是Gram-Schmidt正交化程序的推广。 请注意,在此过程结束时,我们有np.dot(v1hat, v1hat.T)==1np.dot(v2hat,v2hat.T)==1np.dot(v1hat, v2hat)==0(在数值精度范围内)

答案 2 :(得分:2)

编辑我写的原始代码无法正常工作,所以我删除了它。但是按照下面解释的相同的想法,如果你花一些时间思考它,就不需要Cramer的规则,并且代码可以简化如下:

def distance(v1, v2, u) :
    u = np.array(u, ndmin=2)
    v = np.vstack((v1, v2))
    vv = np.dot(v, v.T) # shape (2, 2)
    uv = np.dot(u, v.T) # shape (n ,2)
    ab = np.dot(np.linalg.inv(vv), uv.T) # shape(2, n)
    w = u - np.dot(ab.T, v)
    return np.sqrt(np.sum(w**2, axis=1)) # shape (n,)

为了确保它正常工作,我将Dave的代码打包到distance_3d函数中并尝试了以下内容:

>>> d, n = 3, 1000
>>> v1, v2, u = np.random.rand(d), np.random.rand(d), np.random.rand(n, d)
>>> np.testing.assert_almost_equal(distance_3d(v1, v2, u), distance(v1, v2, u))

但当然它现在适用于任何d

>>> d, n = 1000, 3
>>> v1, v2, u = np.random.rand(d), np.random.rand(d), np.random.rand(n, d)
>>> distance(v1, v2, u)
array([ 10.57891286,  10.89765779,  10.75935644])

你必须分解你的向量,我们称之为u,在两个向量的总和中,u = v + wv在平面中,因此可以分解为{{ 1}},而v = a * v1 + b * v2垂直于平面,因此w

如果你写np.dot(w, v1) = np.dot(w, v2) = 0并将此表达式的点积与u = a * v1 + b * v2 + wv1一起使用,你会得到两个有两个未知数的方程式:

v2

由于它只是一个2x2系统,我们可以使用Cramer's rule解决它:

np.dot(u, v1) = a * np.dot(v1, v1) + b * np.dot(v2, v1)
np.dot(u, v2) = a * np.dot(v1, v2) + b * np.dot(v2, v2)

从这里,你可以得到:

uv1 = np.dot(u, v1)
uv2 = np.dot(u, v2)
v11 = np.dot(v1, v2)
v22 = np.dot(v2, v2)
v12 = np.dot(v1, v2)
v21 = np.dot(v2, v1)
det = v11 * v22 - v21 * v12
a = (uv1 * v22 - v21 * uv2) / det
b = (v11 * uv2 - uv1 * v12) / det

与飞机的距离是w = u - v = u - a * v1 - b * v2 的模数。