使用numpy有效地将16位图像数据转换为8位用于显示,具有强度缩放

时间:2013-01-22 17:25:43

标签: python image image-processing numpy

我经常将16位灰度图像数据转换为8位图像数据以供显示。调整最小和最大显示强度以突出显示图像的“有趣”部分几乎总是有用的。

下面的代码粗略地完成了我想要的,但是它很丑陋且效率低下,并且制作了许多图像数据的中间副本。 如何以最小的内存占用和处理时间实现相同的结果?

import numpy

image_data = numpy.random.randint( #Realistic images would be much larger
    low=100, high=14000, size=(1, 5, 5)).astype(numpy.uint16)

display_min = 1000
display_max = 10000.0

print(image_data)
threshold_image = ((image_data.astype(float) - display_min) *
                   (image_data > display_min))
print(threshold_image)
scaled_image = (threshold_image * (255. / (display_max - display_min)))
scaled_image[scaled_image > 255] = 255
print(scaled_image)
display_this_image = scaled_image.astype(numpy.uint8)
print(display_this_image)

5 个答案:

答案 0 :(得分:13)

您正在做的是halftoning您的形象。

其他人提出的方法效果很好,但是他们一遍又一遍地重复大量昂贵的计算。由于在uint16中最多有65,536个不同的值,因此使用查找表(LUT)可以简化事情。而且由于LUT很小,所以你不必担心做适当的事情,或者不要创建布尔数组。以下代码重用Bi Rico的函数来创建LUT:

import numpy as np
import timeit

rows, cols = 768, 1024
image = np.random.randint(100, 14000,
                             size=(1, rows, cols)).astype(np.uint16)
display_min = 1000
display_max = 10000

def display(image, display_min, display_max): # copied from Bi Rico
    # Here I set copy=True in order to ensure the original image is not
    # modified. If you don't mind modifying the original image, you can
    # set copy=False or skip this step.
    image = np.array(image, copy=True)
    image.clip(display_min, display_max, out=image)
    image -= display_min
    np.floor_divide(image, (display_max - display_min + 1) / 256,
                    out=image, casting='unsafe')
    return image.astype(np.uint8)

def lut_display(image, display_min, display_max) :
    lut = np.arange(2**16, dtype='uint16')
    lut = display(lut, display_min, display_max)
    return np.take(lut, image)


>>> np.all(display(image, display_min, display_max) ==
           lut_display(image, display_min, display_max))
True
>>> timeit.timeit('display(image, display_min, display_max)',
                  'from __main__ import display, image, display_min, display_max',
                   number=10)
0.304813282062
>>> timeit.timeit('lut_display(image, display_min, display_max)',
                  'from __main__ import lut_display, image, display_min, display_max',
                  number=10)
0.0591987428298

所以有一个x5加速,这不是一件坏事,我猜......

答案 1 :(得分:2)

要减少内存使用量,请在原地进行裁剪,避免创建布尔数组。

dataf = image_data.astype(float)
numpy.clip(dataf, display_min, display_max, out=dataf)
dataf -= display_min
datab = ((255. / (display_max - display_min)) * dataf).astype(numpy.uint8)

如果将剪裁限制保持为整数值,则可以交替执行此操作:

numpy.clip(image_data, display_min, display_max, out=image_data)
image_data-= display_min
datab = numpy.empty_like(image_data)
numpy.multiply(255. / (display_max - display_min), image_data, out=datab)

注意:在创建uint8数组之前,仍会在最后一行创建临时浮点数组。

答案 2 :(得分:2)

我会避免将图像转换为浮动图像,您可以执行以下操作:

import numpy as np

def display(image, display_min, display_max):
    # Here I set copy=True in order to ensure the original image is not
    # modified. If you don't mind modifying the original image, you can
    # set copy=False or skip this step.
    image = np.array(image, copy=True)

    image.clip(display_min, display_max, out=image)
    image -= display_min
    image //= (display_min - display_max + 1) / 256.
    image = image.astype(np.uint8)
    # Display image

此处图像的可选副本以其本机数据类型制作,并在最后一行制作8位副本。

答案 3 :(得分:0)

这是我在此解决方案下的交叉验证板上找到的答案 https://stats.stackexchange.com/a/70808/277040

基本上从uint16转换为uint8算法看起来像这样

a = (255 - 0) / (65535 - 0)
b = 255 - a * 65535
newvalue = (a * img + b).astype(np.uint8)

通用版本如下:

def convert(img, target_type_min, target_type_max, target_type):
    imin = img.min()
    imax = img.max()

    a = (target_type_max - target_type_min) / (imax - imin)
    b = target_type_max - a * imax
    new_img = (a * img + b).astype(target_type)
    return new_img

例如

imgu8 = convert(img16u, 0, 255, np.uint8)

答案 4 :(得分:0)

我知道这是一个古老的脚步,但是现在我们有了gpu加速功能。 使用cupy时,cupy总是更快(Jaime的两种评论都以更快的速度运行)。

import numpy as np
import cupy as cp
import timeit
rows, cols = 768, 1024
image = np.random.randint(100, 14000,
                             size=(1, rows, cols)).astype(np.uint16)
display_min = 1000
display_max = 10000

def display(image, display_min, display_max): # copied from Bi Rico
    # Here I set copy=True in order to ensure the original image is not
    # modified. If you don't mind modifying the original image, you can
    # set copy=False or skip this step.
    image = np.array(image, copy=True)
    image.clip(display_min, display_max, out=image)
    image -= display_min
    np.floor_divide(image, (display_max - display_min + 1) / 256,
                    out=image, casting='unsafe')
    return image.astype(np.uint8)

def lut_display(image, display_min, display_max) :
    lut = np.arange(2**16, dtype='uint16')
    lut = display(lut, display_min, display_max)
    return np.take(lut, image)


def displaycp(image2, display_min, display_max): # copied from Bi Rico
    # Here I set copy=True in order to ensure the original image is not
    # modified. If you don't mind modifying the original image, you can
    # set copy=False or skip this step.
    image2 = cp.array(image2, copy=True)
    image2.clip(display_min, display_max, out=image2)
    image2 -= display_min
    cp.floor_divide(image2, (display_max - display_min + 1) / 256,
                    out=image2, casting='unsafe')
    return image2.astype(cp.uint8)

def lut_displaycp(image2, display_min, display_max) :
    lut = cp.arange(2**16, dtype='uint16')
    lut = displaycp(lut, display_min, display_max)
    return cp.take(lut, image2)

np.all(display(image, display_min, display_max) ==
           lut_display(image, display_min, display_max))

imagecp = cp.asarray(image)
type(imagecp)

cp.all(displaycp(imagecp, display_min, display_max) ==
           lut_displaycp(imagecp, display_min, display_max))

np.all(cp.asnumpy(displaycp(imagecp, display_min, display_max)) ==
          display(image, display_min, display_max))

时间

timeit.timeit('display(image, display_min, display_max)',
                  'from __main__ import display, image, display_min, display_max',
                   number=100)

1.2715457340000285

timeit.timeit('lut_display(image, display_min, display_max)',
                  'from __main__ import lut_display, image, display_min, display_max',
                  number=100)

0.27357000399933895

timeit.timeit('displaycp(imagecp, display_min, display_max)',
                  'from __main__ import displaycp, imagecp, display_min, display_max',
                   number=100)

0.018452465999871492

timeit.timeit('lut_displaycp(imagecp, display_min, display_max)',
                  'from __main__ import lut_displaycp, imagecp, display_min, display_max',
                  number=100)

0.015030614999886893