我想在变量(列)之间生成图表,这些图表具有高于和低于某个点的相关性,并且具有p值< 0.01。图表将是ggplot2(线或条)图,用于绘制相关的两列(变量)。
到目前为止,这是我的方法的要点,有一些虚拟数据,我会喜欢指向下一步的指针。
# Create some dummy data
df <- data.frame(sample(1:50), sample(1:50), sample(1:50), sample(1:50))
colnames(df) <- c("var1", "var2", "var3", "var4")
# Find correlations in the dummy data
df.cor <- cor(df)
# Make up some random pvalues for this example
x <- 0:1000
df.cor.pvals <- data.frame(sample(x/1000, 4), sample(x/1000, 4), sample(x/1000, 4), sample(x/1000,4))
colnames(df.cor.pvals) <- c("var1", "var2", "var3", "var4")
# Find the significant correlations
df.cor.extreme <- ((df.cor < -0.01 | df.cor > 0.01) & df.cor.pvals < 0.5)
# Ready data to for plotting
df$rownames <- rownames(df)
df.melt <- melt(df, id="rownames")
# I want to plot the combinations of variables that have a TRUE value
# in the df.cor.extreme matrix
如果var1和var2的值为TRUE,则下面是硬编码示例。我假设这是我需要某种循环来生成多个图的地方,其中varA和varB是相关的。
ggplot(df.melt[(df.melt$variable=="var1" | df.melt$variable=="var2"),], aes(x=rownames, y=value, group=variable, colour=variable)) +
geom_line()
答案 0 :(得分:8)
如@DrewSteen的评论所述,p-avlue必须与cor的形状相同。
这里我提供了一个计算p值矩阵的函数(它应该存在于stats包中的内置函数)
pvalue.matrix <- function(x,...){
ncx <- ncol(x)
r <- matrix(0, nrow = ncx, ncol = ncx)
for (i in seq_len(ncx)) {
for (j in seq_len(i)) {
x2 <- x[, i]
y2 <- x[, j]
r[i, j] <- cor.test(x2,y2,...)$p.value
}
}
r <- r + t(r) - diag(diag(r))
rownames(r) <- colnames(x)
colnames(r) <- colnames(x)
r
}
然后使用|的矢量化版本和&amp;像这样
df.cor.sig <- (df.cor > 0.01 | df.cor < -0.01) & pvalue.matrix(df) < 0.5
情节是经典的geom_tile
library(reshape2) ## melt
library(plyr) ## round_any
library(ggplot2)
dat <- expand.grid(var1=1:4, var2=1:4)
dat$value <- melt(df.cor.sig)$value
dat$labels <- paste(round_any(df.cor,0.01) ,'(', round_any(pvalue.matrix(df),0.01),')',sep='')
ggplot(dat, aes(x=var1,y=var2,label=labels))+
geom_tile(aes(fill = value),colour='white')+
geom_text()
plots <- apply(dat,1,function(x){
plot.grob <- nullGrob()
if(length(grep(pattern='TRUE',x[3])) >0 ){
gg <- paste('var',c(x[1],x[2]),sep='')
p <- ggplot(subset(df.melt,variable %in% gg ),
aes(x=rownames, y=value, group=variable, colour=variable)) +
geom_line()
plot.grob <- ggplotGrob(p)
}
plot.grob
})
library(gridExtra)
do.call(grid.arrange, plots)
答案 1 :(得分:1)
如果您自己这样做,只是想在@agstudy的答案中添加一个补充。
如果您使用生成矩阵索引表的函数的结果,您可以将重要性应用于。即这一行:
dat <- expand.grid(var1=1:4, var2=1:4)
还要记住,上面一行中的硬编码4是你(正方形)网格的长度。无论如何,您可以通过执行如下代码来忽略任何重复图形的生成:
# Find redunant pairs
dat <- data.frame(t(apply(dat, 1, function(x){
if(x[1]-x[2] <= 0) { # If > zero than pair has come before.
-x # If = zero than pair is same
} else x
})))
# Remove redundant pairs
dat <- dat[dat$var1>0,]
享受!