检测定点乘法中的溢出

时间:2012-12-26 06:08:53

标签: c# math fixed-point

简短版本:如何使用here描述的定点乘法检测溢出,但是对于带符号的类型?

长版:

我的Q31.32 fixed point type仍然存在一些溢出问题。为了更容易在纸上编写示例,我使用相同的算法(基于sbyte的Q3.4)制作了更小的类型。我想如果我能解决Q3.4类型的所有扭结,那么相同的逻辑应该适用于Q31.32。

请注意,我可以通过在16位整数上执行它来非常轻松地实现Q3.4乘法,但我正在做如果不存在,因为对于Q31.32我需要128-位整数不存在(BigInteger太慢)。

我希望我的乘法通过饱和来处理溢出,即当溢出发生时,结果是可以根据操作数的符号表示的最高或最小值。

这基本上是表示类型的方式:

struct Fix8 {
    sbyte m_rawValue;
    public static readonly Fix8 One = new Fix8(1 << 4);
    public static readonly Fix8 MinValue = new Fix8(sbyte.MinValue);
    public static readonly Fix8 MaxValue = new Fix8(sbyte.MaxValue);

    Fix8(sbyte value) {
        m_rawValue = value;
    }

    public static explicit operator decimal(Fix8 value) {
        return (decimal)value.m_rawValue / One.m_rawValue;
    }

    public static explicit operator Fix8(decimal value) {
        var nearestExact = Math.Round(value * 16m) * 0.0625m;
        return new Fix8((sbyte)(nearestExact * One.m_rawValue));
    }
}

这就是我目前处理乘法的方式:

    public static Fix8 operator *(Fix8 x, Fix8 y) {
        sbyte xl = x.m_rawValue;
        sbyte yl = y.m_rawValue;

        // split x and y into their highest and lowest 4 bits
        byte xlo = (byte)(xl & 0x0F);
        sbyte xhi = (sbyte)(xl >> 4);
        byte ylo = (byte)(yl & 0x0F);
        sbyte yhi = (sbyte)(yl >> 4);

        // perform cross-multiplications
        byte lolo = (byte)(xlo * ylo);
        sbyte lohi = (sbyte)((sbyte)xlo * yhi);
        sbyte hilo = (sbyte)(xhi * (sbyte)ylo);
        sbyte hihi = (sbyte)(xhi * yhi);

        // shift results as appropriate
        byte loResult = (byte)(lolo >> 4);
        sbyte midResult1 = lohi;
        sbyte midResult2 = hilo;
        sbyte hiResult = (sbyte)(hihi << 4);

        // add everything
        sbyte sum = (sbyte)((sbyte)loResult + midResult1 + midResult2 + hiResult);

        // if the top 4 bits of hihi (unused in the result) are neither all 0s or 1s,
        // then this means the result overflowed.
        sbyte topCarry = (sbyte)(hihi >> 4);
        bool opSignsEqual = ((xl ^ yl) & sbyte.MinValue) == 0;
        if (topCarry != 0 && topCarry != -1) {
            return opSignsEqual ? MaxValue : MinValue;
        }

        // if signs of operands are equal and sign of result is negative,
        // then multiplication overflowed upwards
        // the reverse is also true
        if (opSignsEqual) {
            if (sum < 0) {
                return MaxValue;
            }
        }
        else {
            if (sum > 0) {
                return MinValue;
            }
        }

        return new Fix8(sum);
    }

这使得结果在类型的精度范围内准确,并处理大多数溢出情况。但它并不处理这些问题,例如:

Failed -8 * 2 : expected -8 but got 0
Failed 3.5 * 5 : expected 7,9375 but got 1,5

让我们弄清楚第一个乘法是如何发生的。

-8 and 2 are represented as x = 0x80 and y = 0x20.
xlo = 0x80 & 0x0F = 0x00
xhi = 0x80 >> 4 = 0xf8
ylo = 0x20 & 0x0F = 0x00
yhi = 0x20 >> 4 = 0x02

lolo = xlo * ylo = 0x00
lohi = xlo * yhi = 0x00
hilo = xhi * ylo = 0x00
hihi = xhi * yhi = 0xf0

总和显然是0,因为除了hihi,所有项都是0,但是在最终总和中只使用hihi的最低4位。

我通常的溢出检测魔法在这里不起作用:结果为零,因此结果的符号无意义(例如0.0625 * -0.0625 == 0(通过向下舍入),0为正,但操作数的符号不同) ; hihi的高位也是1111,即使没有溢出也经常发生。

基本上我不知道如何检测这里发生的溢出。有更通用的方法吗?

2 个答案:

答案 0 :(得分:0)

您应该检查hihi以查看它是否包含结果范围之外的任何相关位。您还可以将结果的最高位与hihi中的相应位进行比较,以查看进位是否传播了那么远,以及是否进行了传播(即位更改),是否表示溢出(即位已更改)在错误的方向)。如果您使用一个补码表示法,并且分别处理符号位,则所有这些都可能更容易制定。但在这种情况下,你的-8例子毫无意义。

查看您的示例,您有hihi = 0xf0

hihi   11110000
result     ±###.####

所以在这种情况下,如果hihi单独没有溢出,那么前5位将全部相同,并且结果的符号将与hihi的符号匹配。这不是这种情况。您可以使用

进行检查
if ((hihi & 0x08) * 0x1f != (hihi & 0xf8))
  handle_overflow();

通过一次添加一个结果并在每个步骤之后执行常见的溢出检测,可以最容易地检测到进入hihi。没准备好那段代码。

答案 1 :(得分:0)

这花了我很长时间,但我最终想出了一切。此代码经过测试,适用于sbyte允许的范围内x和y的每种可能组合。这是注释代码:

    static sbyte AddOverflowHelper(sbyte x, sbyte y, ref bool overflow) {
        var sum = (sbyte)(x + y);
        // x + y overflows if sign(x) ^ sign(y) != sign(sum)
        overflow |= ((x ^ y ^ sum) & sbyte.MinValue) != 0;
        return sum;
    }

    /// <summary>
    /// Multiplies two Fix8 numbers.
    /// Deals with overflow by saturation.
    /// </summary>
    public static Fix8 operator *(Fix8 x, Fix8 y) {
        // Using the cross-multiplication algorithm, for learning purposes.
        // It would be both trivial and much faster to use an Int16, but this technique
        // won't work for a Fix64, since there's no Int128 or equivalent (and BigInteger is too slow).

        sbyte xl = x.m_rawValue;
        sbyte yl = y.m_rawValue;

        byte xlo = (byte)(xl & 0x0F);
        sbyte xhi = (sbyte)(xl >> 4);
        byte ylo = (byte)(yl & 0x0F);
        sbyte yhi = (sbyte)(yl >> 4);

        byte lolo = (byte)(xlo * ylo);
        sbyte lohi = (sbyte)((sbyte)xlo * yhi);
        sbyte hilo = (sbyte)(xhi * (sbyte)ylo);
        sbyte hihi = (sbyte)(xhi * yhi);

        byte loResult = (byte)(lolo >> 4);
        sbyte midResult1 = lohi;
        sbyte midResult2 = hilo;
        sbyte hiResult = (sbyte)(hihi << 4);

        bool overflow = false;
        // Check for overflow at each step of the sum, if it happens overflow will be true
        sbyte sum = AddOverflowHelper((sbyte)loResult, midResult1, ref overflow);
        sum = AddOverflowHelper(sum, midResult2, ref overflow);
        sum = AddOverflowHelper(sum, hiResult, ref overflow);

        bool opSignsEqual = ((xl ^ yl) & sbyte.MinValue) == 0;

        // if signs of operands are equal and sign of result is negative,
        // then multiplication overflowed positively
        // the reverse is also true
        if (opSignsEqual) {
            if (sum < 0 || (overflow && xl > 0)) {
                return MaxValue;
            }
        }
        else {
            if (sum > 0) {
                return MinValue;
            }
            // If signs differ, both operands' magnitudes are greater than 1,
            // and the result is greater than the negative operand, then there was negative overflow.
            sbyte posOp, negOp;
            if (xl > yl) {
                posOp = xl;
                negOp = yl;
            }
            else {
                posOp = yl;
                negOp = xl;
            }
            if (sum > negOp && negOp < -(1 << 4) && posOp > (1 << 4)) {
                return MinValue;
            }
        }

        // if the top 4 bits of hihi (unused in the result) are neither all 0s nor 1s,
        // then this means the result overflowed.
        sbyte topCarry = (sbyte)(hihi >> 4);
        // -17 (-1.0625) is a problematic value which never causes overflow but messes up the carry bits
        if (topCarry != 0 && topCarry != -1 && xl != -17 && yl != -17) {
            return opSignsEqual ? MaxValue : MinValue;
        }

        // Round up if necessary, but don't overflow
        var lowCarry = (byte)(lolo << 4);
        if (lowCarry >= 0x80 && sum < sbyte.MaxValue) {
            ++sum;
        }

        return new Fix8(sum);
    }

我将所有这些放在一个经过适当单元测试的.NET定点数学库中,可以在这里找到:https://github.com/asik/FixedMath.Net