我使用以下代码来计算具有指定内核的图像的卷积(在我的情况下是高斯)。每次我得到不同的结果,结果图像甚至不接近我在空间域中通过卷积获得的结果。首先我认为问题在于图像的数据类型。我将它们改为32和64,但结果仍然相同。谁能告诉我什么可能是错的?
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html#dft 上面的这个功能给了我一个黑色的图像。我在GRAYSCALE中输入。
void convol_fft(const Mat& A,const vector<vector<float>>& kernel2d,Mat& result)
{
Mat B = Mat(3,3,CV_64F);
for (int row = 0; row < kernel2d.size(); row++)
for (int col = 0; col < kernel2d[row].size(); col++){
B.at<uchar>(row,col) = (uchar)kernel2d[row][col];
}
int dft_M = getOptimalDFTSize( A.rows+B.rows-1 );
int dft_N = getOptimalDFTSize( A.cols+B.cols-1 );
Mat dft_A = Mat::zeros(dft_M, dft_N, CV_64F);
Mat dft_B = Mat::zeros(dft_M, dft_N, CV_64F);
Mat dft_A_part = dft_A(Rect(0, 0, A.cols,A.rows));
A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);
Mat dft_B_part = dft_B(Rect(0, 0, B.cols,B.rows));
B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);
dft(dft_A, dft_A, 0, A.rows);
dft(dft_B, dft_B, 0, B.rows);
// set the last parameter to false to compute convolution instead of correlation
mulSpectrums( dft_A, dft_B, dft_A, 0, false );
idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1 );
result = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
normalize(result, result, 0, 1, NORM_MINMAX, result.type());
pow(result, 3., result);
// B ^= Scalar::all(255);
}
答案 0 :(得分:1)
以下基于openCV的phaseCorrelateRes()
的代码将在2维中进行关联。
static void fftShift(InputOutputArray _out)
{
Mat out = _out.getMat();
if(out.rows == 1 && out.cols == 1)
{
// trivially shifted.
return;
}
vector<Mat> planes;
split(out, planes);
int xMid = out.cols >> 1;
int yMid = out.rows >> 1;
bool is_1d = xMid == 0 || yMid == 0;
if(is_1d)
{
xMid = xMid + yMid;
for(size_t i = 0; i < planes.size(); i++)
{
Mat tmp;
Mat half0(planes[i], Rect(0, 0, xMid, 1));
Mat half1(planes[i], Rect(xMid, 0, xMid, 1));
half0.copyTo(tmp);
half1.copyTo(half0);
tmp.copyTo(half1);
}
}
else
{
for(size_t i = 0; i < planes.size(); i++)
{
// perform quadrant swaps...
Mat tmp;
Mat q0(planes[i], Rect(0, 0, xMid, yMid));
Mat q1(planes[i], Rect(xMid, 0, xMid, yMid));
Mat q2(planes[i], Rect(0, yMid, xMid, yMid));
Mat q3(planes[i], Rect(xMid, yMid, xMid, yMid));
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
}
}
merge(planes, out);
}
void Correlate2d(
const cv::Mat& src1,
const cv::Mat& src2,
cv::Mat& dst,
double* response)
{
CV_Assert( src1.type() == src2.type());
CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 );
CV_Assert( src1.size == src2.size);
int M = getOptimalDFTSize(src1.rows);
int N = getOptimalDFTSize(src1.cols);
Mat padded1, padded2, paddedWin;
if(M != src1.rows || N != src1.cols)
{
copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));
}
else
{
padded1 = src1;
padded2 = src2;
}
Mat FFT1, FFT2, P, Pm, C;
// correlation equation
// Reference: http://en.wikipedia.org/wiki/Phase_correlation
dft(padded1, FFT1, DFT_REAL_OUTPUT);
dft(padded2, FFT2, DFT_REAL_OUTPUT);
mulSpectrums(FFT1, FFT2, dst, 0, true);
idft(dst, dst, DFT_SCALE); // gives us the correlation result...
fftShift(dst); // shift the energy to the center of the frame.
// locate the highest peak
Point peakLoc;
minMaxLoc(dst, NULL, NULL, NULL, &peakLoc);
// max response is scaled
if( response )
*response = dst.at<float>(peakLoc);
}
你可以在\ opencv \ sources \ modules \ imgproc \ src \ phasecorr.cpp中找到代码
为了将代码更改为卷积,只需更改此行:
mulSpectrums(FFT1, FFT2, dst, 0, true);
到
mulSpectrums(FFT1, FFT2, dst, 0, false);
这相当于在matlab中进行:
dst = fftshift(ifft2(fft2(src1).*conj(fft2(src2))))
答案 1 :(得分:0)
我不确定OpenCV ......但这看起来很可疑。
for (int row = 0; row < kernel2d.size(); row++)
for (int col = 0; col < kernel2d[row].size(); col++){
B.at<uchar>(row,col) = (uchar)kernel2d[row][col];
}
如果要填充B内核,则该行应为kernel2d [col] .size()。看起来你正在超越B内核。 kernel2d.size()的价值是什么?
为什么不直接加载值?保存所有函数调用。
对于高斯核,它应该看起来像{1,2,1,2,3,2,1,2,1}。