从O(logn)中的python heapq删除

时间:2012-12-10 12:28:02

标签: python

我有一个像这样的堆(python,heapq模块) -

>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))

如何使用项目值删除元组为"创建测试"在O(logn)中保存堆属性?

这是我能想到的(不是O(logn))

for i in range(len(h)):
   if h[i][1] == "create tests":
      h[i], h[-1] = h[-1], h[i]
      popped = h.pop()
      heapq.heapify(h)
      break

5 个答案:

答案 0 :(得分:10)

如果您确实需要从heap中取出一件物品,但想要保留heap,则可以懒散地将其丢弃并在物品自然出现时将其丢弃,而不是搜索列表为了它。

如果您要将要删除的项目存储在黑名单set中,则每次heapq.heappop检查该项目是否在set中。如果它存在则丢弃它并再次heappop,直到您收到未列入黑名单的内容,或者heap为空

答案 1 :(得分:2)

如果多个已删除的元素具有相同的值,则黑名单集会有问题。而是使用tombstone-counting-dict实现heap_remove

def heap_remove(heap, value):
  tombstones[value] = tombstones.get(value, 0) + 1
  while len(heap) and heap[0] in tombstones and tombstones[heap[0]]:
      heappop(heap)

正如预期的那样,您已经分摊了O(1)删除时间,并且只要您不是从其他地方的top {»}},您的堆的popping始终是准确的。

考虑这个数字列表,首先将它们全部推入堆中,然后以相同的顺序“删除”(不弹出):

  

[3,3,2,7,1,4,2]

插入按预期工作:

After inserting 3 into heap, top = 3
After inserting 3 into heap, top = 3
After inserting 2 into heap, top = 2
After inserting 7 into heap, top = 2
After inserting 1 into heap, top = 1
After inserting 4 into heap, top = 1
After inserting 2 into heap, top = 1

但删除是通过递增对象的墓碑来完成的。如果堆的顶部设置了墓碑,则删除该对象并递减tomstone计数器。

Called remove( 3 )
  Marking 3 for deletion
Called remove( 3 )
  Marking 3 for deletion
Called remove( 2 )
  Marking 2 for deletion
Called remove( 7 )
  Marking 7 for deletion
Called remove( 1 )
  Marking 1 for deletion
  Deleting top 1
    Updated heap is: [2, 2, 3, 7, 3, 4]
  Deleting top 1
    Updated heap is: [2, 3, 3, 7, 4]
Called remove( 4 )
  Marking 4 for deletion
Called remove( 2 )
  Marking 2 for deletion
  Deleting top 2
    Updated heap is: [3, 3, 4, 7]
  Deleting top 3
    Updated heap is: [3, 7, 4]
  Deleting top 3
    Updated heap is: [4, 7]
  Deleting top 4
    Updated heap is: [7]
  Deleting top 7
    Updated heap is: []

请注意,当第二个heap_remove(3)被调用时,@ GP89的解决方案会因为墓碑集中已有3而崩溃。

您可以浏览此示例here

答案 2 :(得分:0)

我担心只有heapq没有这样的方法。由于从堆中搜索元素需要O(n)

但您可以将其与dict之类的内容结合使用,这样可以O(1)次来搜索条目。

<强>更新:

  

我尝试使用dict进行簿记,但是如何在插入时获得“创建测试”的索引? - Prakhar 3小时前

一种天真的方法是:

# remember to update this hdict when updating the heap.
hdict = { h[i][1]: i for i in range(len(h)) }

然后,您只需访问此hdict而不是O(n)线性搜索,即可获取给定字符串的索引。

答案 3 :(得分:0)

有2个以上的想法, 这是一个完整的演示:我将使其简洁明了。

from heapq import heappush, heappop

class Solution:

  def demo():

    deleted = {}
    h = [0]

    heappush(h, 789)
    heappush(h, 101)
    heappush(h, 101)

    self.remove(h, 101, deleted)

    max_val = self.peek(h, deleted)

  def remove(self, h, y, deleted):
    deleted[y] = deleted.get(y, 0) + 1
    while len(h) > 0 and h[0] == y and deleted[y] > 0:
        heappop(h)
        deleted[y] -= 1

  def peek(self, h, deleted):
    while len(h) > 0 and deleted.get(h[0],0) > 0:
        deleted[h[0]] -= 1
        heappop(h)
    return h[0]

答案 4 :(得分:0)

通过这种方法,我基本上是跟踪字典中的元素。因此,每当我删除它时,搜索过程就会变成O(1)。

class RemoveHeap:
    def __init__(self):
        self.h = []
        self.track = collections.defaultdict(collections.deque)
        self.counter = itertools.count()

    def insert_item(self, val):
        count = next(self.counter)
        item = [val, count, 'active']
        self.track[val].append(item)
        heapq.heappush(self.h, item)

    def delete_item(self, val):
        if val in self.track:
            items = self.track[val]
            for item in items:
                if item[2] == 'active':
                    item[2] = 'deleted'
                    break

    def pop_item(self):
        while len(self.h) > 0:
            item = heapq.heappop(self.h)
            item_track = self.track[item[0]]
            item_track.popleft()
            if len(item_track) == 0:
                del self.track[item[0]]
            else:
                self.track[item[0]] = item_track
            if item[2] == 'active':
                return item[0]

    def peek_item(self):
        item = self.h[0]
        if item[2] == 'deleted':
            x = self.pop_item()
            self.insert_item(x)
            return x
        return item[0]