如何计算球体上从点到线段的距离?

时间:2009-08-19 12:19:49

标签: language-agnostic geometry gis geospatial distance

我在地球上有一个线段(大圆圈部分)。线段由其末端的坐标定义。显然,两个点定义了两个线段,所以假设我对较短的线段感兴趣。

我得到第三点,我正在寻找线和点之间的(最短)距离。

所有坐标均以经度\纬度(WGS 84)给出。

如何计算距离?

任何合理的编程语言都可以使用解决方案。

7 个答案:

答案 0 :(得分:18)

这是我自己的解决方案,基于ask Dr. Math中的想法。我很乐意看到您的反馈。

首先免责声明。这种解决方案适用于球体。地球不是一个球体,坐标系统(WGS 84)并不认为它是一个球体。所以这只是一个近似值,我无法估计是错误。此外,对于非常小的距离,通过假设所有东西都只是一个共面,它也可能得到很好的近似。我再一次不知道距离必须“小”。

现在开始营业。我将调用线A,B和第三点C的末端。基本上,算法是:

  1. 首先将坐标转换为笛卡尔坐标(原点位于地心) - e.g. here
  2. 使用以下3个矢量积计算最接近C的AB线上的点:

    G = A x B

    F = C x G

    T = G x F

  3. 将T标准化并乘以地球半径。

  4. 将T转换回经度\纬度。
  5. 计算T和C之间的距离 - e.g. here
  6. 如果你正在寻找C和A和B定义的大圆之间的距离,这些步骤就足够了。如果像我一样你对C和较短线段之间的距离感兴趣,你需要采取额外的步骤验证T确实在此段上。如果不是,那么最近的点必然是A或B两端之一 - 最简单的方法是检查哪一个。

    一般而言,三种载体产品背后的想法如下。第一个(G)给出了A和B大圆的平面(所以包含A,B和原点的平面)。第二个(F)给出了通过C并且垂直于G的大圆。然后T是由F和G定义的大圆的交点,通过归一化和乘以R得到正确的长度。

    这是一些部分Java代码。

    找到大圆圈上的最近点。输入和输出是长度为2的数组。中间阵列长度为3.

    double[] nearestPointGreatCircle(double[] a, double[] b, double c[])
    {
        double[] a_ = toCartsian(a);
        double[] b_ = toCartsian(b);
        double[] c_ = toCartsian(c);
    
        double[] G = vectorProduct(a_, b_);
        double[] F = vectorProduct(c_, G);
        double[] t = vectorProduct(G, F);
        normalize(t);
        multiplyByScalar(t, R_EARTH);
        return fromCartsian(t);
    }
    

    找到细分上最近的点:

    double[] nearestPointSegment (double[] a, double[] b, double[] c)
    {
       double[] t= nearestPointGreatCircle(a,b,c);
       if (onSegment(a,b,t))
         return t;
       return (distance(a,c) < distance(b,c)) ? a : c;
    } 
    

    这是一种测试点T的简单方法,我们知道它位于与A和B相同的大圆上,位于这个大圆的较短段上。但是,有更有效的方法可以做到这一点:

       boolean onSegment (double[] a, double[] b, double[] t)
       {
         // should be   return distance(a,t)+distance(b,t)==distance(a,b), 
         // but due to rounding errors, we use: 
         return Math.abs(distance(a,b)-distance(a,t)-distance(b,t)) < PRECISION;
       }    
    

答案 1 :(得分:3)

从Ask Dr. Math尝试Distance from a Point to a Great Circle。您仍然需要将经度/纬度转换为球面坐标并缩放地球半径,但这似乎是一个很好的方向。

答案 2 :(得分:1)

这是接受答案的完整代码,作为想法小提琴(找到here):

import java.util.*;
import java.lang.*;
import java.io.*;

/* Name of the class has to be "Main" only if the class is public. */
class Ideone
{



    private static final double _eQuatorialEarthRadius = 6378.1370D;
    private static final double _d2r = (Math.PI / 180D);
    private static double PRECISION = 0.1;





    // Haversine Algorithm
    // source: http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates

    private static double HaversineInM(double lat1, double long1, double lat2, double long2) {
        return  (1000D * HaversineInKM(lat1, long1, lat2, long2));
    }

    private static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
        double dlong = (long2 - long1) * _d2r;
        double dlat = (lat2 - lat1) * _d2r;
        double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
                * Math.pow(Math.sin(dlong / 2D), 2D);
        double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
        double d = _eQuatorialEarthRadius * c;
        return d;
    }

    // Distance between a point and a line

    public static void pointLineDistanceTest() {

        //line
        //double [] a = {50.174315,19.054743};
        //double [] b = {50.176019,19.065042};
        double [] a = {52.00118, 17.53933};
        double [] b = {52.00278, 17.54008};

        //point
        //double [] c = {50.184373,19.054657};
        double [] c = {52.008308, 17.542927};
        double[] nearestNode = nearestPointGreatCircle(a, b, c);
        System.out.println("nearest node: " + Double.toString(nearestNode[0]) + "," + Double.toString(nearestNode[1]));
        double result =  HaversineInM(c[0], c[1], nearestNode[0], nearestNode[1]);
        System.out.println("result: " + Double.toString(result));
    }

    // source: http://stackoverflow.com/questions/1299567/how-to-calculate-distance-from-a-point-to-a-line-segment-on-a-sphere
    private static double[] nearestPointGreatCircle(double[] a, double[] b, double c[])
    {
        double[] a_ = toCartsian(a);
        double[] b_ = toCartsian(b);
        double[] c_ = toCartsian(c);

        double[] G = vectorProduct(a_, b_);
        double[] F = vectorProduct(c_, G);
        double[] t = vectorProduct(G, F);

        return fromCartsian(multiplyByScalar(normalize(t), _eQuatorialEarthRadius));
    }

    @SuppressWarnings("unused")
    private static double[] nearestPointSegment (double[] a, double[] b, double[] c)
    {
       double[] t= nearestPointGreatCircle(a,b,c);
       if (onSegment(a,b,t))
         return t;
       return (HaversineInKM(a[0], a[1], c[0], c[1]) < HaversineInKM(b[0], b[1], c[0], c[1])) ? a : b;
    }

     private static boolean onSegment (double[] a, double[] b, double[] t)
       {
         // should be   return distance(a,t)+distance(b,t)==distance(a,b), 
         // but due to rounding errors, we use: 
         return Math.abs(HaversineInKM(a[0], a[1], b[0], b[1])-HaversineInKM(a[0], a[1], t[0], t[1])-HaversineInKM(b[0], b[1], t[0], t[1])) < PRECISION;
       }


    // source: http://stackoverflow.com/questions/1185408/converting-from-longitude-latitude-to-cartesian-coordinates
    private static double[] toCartsian(double[] coord) {
        double[] result = new double[3];
        result[0] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.cos(Math.toRadians(coord[1]));
        result[1] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.sin(Math.toRadians(coord[1]));
        result[2] = _eQuatorialEarthRadius * Math.sin(Math.toRadians(coord[0]));
        return result;
    }

    private static double[] fromCartsian(double[] coord){
        double[] result = new double[2];
        result[0] = Math.toDegrees(Math.asin(coord[2] / _eQuatorialEarthRadius));
        result[1] = Math.toDegrees(Math.atan2(coord[1], coord[0]));

        return result;
    }


    // Basic functions
    private static double[] vectorProduct (double[] a, double[] b){
        double[] result = new double[3];
        result[0] = a[1] * b[2] - a[2] * b[1];
        result[1] = a[2] * b[0] - a[0] * b[2];
        result[2] = a[0] * b[1] - a[1] * b[0];

        return result;
    }

    private static double[] normalize(double[] t) {
        double length = Math.sqrt((t[0] * t[0]) + (t[1] * t[1]) + (t[2] * t[2]));
        double[] result = new double[3];
        result[0] = t[0]/length;
        result[1] = t[1]/length;
        result[2] = t[2]/length;
        return result;
    }

    private static double[] multiplyByScalar(double[] normalize, double k) {
        double[] result = new double[3];
        result[0] = normalize[0]*k;
        result[1] = normalize[1]*k;
        result[2] = normalize[2]*k;
        return result;
    }

     public static void main(String []args){
        System.out.println("Hello World");
        Ideone.pointLineDistanceTest();

     }



}

它适用于评论数据:

//line
double [] a = {50.174315,19.054743};
double [] b = {50.176019,19.065042};
//point
double [] c = {50.184373,19.054657};

最近的节点是:50.17493121381319,19.05846668493702

但我对这些数据有疑问:

double [] a = {52.00118, 17.53933};
double [] b = {52.00278, 17.54008};
//point
double [] c = {52.008308, 17.542927};

最近的节点是:52.00834987257176,17.542691313436357哪个错了。

我认为由两点指定的行不是封闭的段。

答案 3 :(得分:1)

如果有人需要,这是一个移植到c#

的愚蠢的回答
        private static double _eQuatorialEarthRadius = 6378.1370D;
        private static double _d2r = (Math.PI / 180D);
        private static double PRECISION = 0.1;

        // Haversine Algorithm
        // source: http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates

        private static double HaversineInM(double lat1, double long1, double lat2, double long2) {
            return  (1000D * HaversineInKM(lat1, long1, lat2, long2));
        }

        private static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
            double dlong = (long2 - long1) * _d2r;
            double dlat = (lat2 - lat1) * _d2r;
            double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r)
                    * Math.Pow(Math.Sin(dlong / 2D), 2D);
            double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
            double d = _eQuatorialEarthRadius * c;
            return d;
        }

        // Distance between a point and a line
        static double pointLineDistanceGEO(double[] a, double[] b, double[] c)
        {

            double[] nearestNode = nearestPointGreatCircle(a, b, c);
            double result = HaversineInKM(c[0], c[1], nearestNode[0], nearestNode[1]);

            return result;
        }

        // source: http://stackoverflow.com/questions/1299567/how-to-calculate-distance-from-a-point-to-a-line-segment-on-a-sphere
        private static double[] nearestPointGreatCircle(double[] a, double[] b, double [] c)
        {
            double[] a_ = toCartsian(a);
            double[] b_ = toCartsian(b);
            double[] c_ = toCartsian(c);

            double[] G = vectorProduct(a_, b_);
            double[] F = vectorProduct(c_, G);
            double[] t = vectorProduct(G, F);

            return fromCartsian(multiplyByScalar(normalize(t), _eQuatorialEarthRadius));
        }

        private static double[] nearestPointSegment (double[] a, double[] b, double[] c)
        {
           double[] t= nearestPointGreatCircle(a,b,c);
           if (onSegment(a,b,t))
             return t;
           return (HaversineInKM(a[0], a[1], c[0], c[1]) < HaversineInKM(b[0], b[1], c[0], c[1])) ? a : b;
        }

         private static bool onSegment (double[] a, double[] b, double[] t)
           {
             // should be   return distance(a,t)+distance(b,t)==distance(a,b), 
             // but due to rounding errors, we use: 
             return Math.Abs(HaversineInKM(a[0], a[1], b[0], b[1])-HaversineInKM(a[0], a[1], t[0], t[1])-HaversineInKM(b[0], b[1], t[0], t[1])) < PRECISION;
           }


        // source: http://stackoverflow.com/questions/1185408/converting-from-longitude-latitude-to-cartesian-coordinates
        private static double[] toCartsian(double[] coord) {
            double[] result = new double[3];
            result[0] = _eQuatorialEarthRadius * Math.Cos(deg2rad(coord[0])) * Math.Cos(deg2rad(coord[1]));
            result[1] = _eQuatorialEarthRadius * Math.Cos(deg2rad(coord[0])) * Math.Sin(deg2rad(coord[1]));
            result[2] = _eQuatorialEarthRadius * Math.Sin(deg2rad(coord[0]));
            return result;
        }

        private static double[] fromCartsian(double[] coord){
            double[] result = new double[2];
            result[0] = rad2deg(Math.Asin(coord[2] / _eQuatorialEarthRadius));
            result[1] = rad2deg(Math.Atan2(coord[1], coord[0]));

            return result;
        }


        // Basic functions
        private static double[] vectorProduct (double[] a, double[] b){
            double[] result = new double[3];
            result[0] = a[1] * b[2] - a[2] * b[1];
            result[1] = a[2] * b[0] - a[0] * b[2];
            result[2] = a[0] * b[1] - a[1] * b[0];

            return result;
        }

        private static double[] normalize(double[] t) {
            double length = Math.Sqrt((t[0] * t[0]) + (t[1] * t[1]) + (t[2] * t[2]));
            double[] result = new double[3];
            result[0] = t[0]/length;
            result[1] = t[1]/length;
            result[2] = t[2]/length;
            return result;
        }

        private static double[] multiplyByScalar(double[] normalize, double k) {
            double[] result = new double[3];
            result[0] = normalize[0]*k;
            result[1] = normalize[1]*k;
            result[2] = normalize[2]*k;
            return result;
        }

答案 4 :(得分:1)

对于几千米的距离,我会简化从球到平面的问题。 然后,问题非常简单,因为可以使用简单的三角形计算:

我们有A点和B点,并寻找到AB线的距离X.然后:

Location a;
Location b;
Location x;

double ax = a.distanceTo(x);
double alfa = (Math.abs(a.bearingTo(b) - a.bearingTo(x))) / 180
            * Math.PI;
double distance = Math.sin(alfa) * ax;

答案 5 :(得分:0)

球体上两点之间的最短距离是通过这两点的大圆的较小边。我相信你已经知道了。这里有一个类似的问题http://www.physicsforums.com/archive/index.php/t-178252.html可以帮助您以数学方式对其进行建模。

说实话,我不确定你有多大可能得到一个这样的编码例子。

答案 6 :(得分:0)

我现在基本上都在寻找相同的东西,除了我严格地说不关心有一个大圆圈的一段,而只是想要距离整圆的任何一点。

我目前正在调查的两个链接:

This page提到“跨轨道距离”,这基本上就是您正在寻找的。

此外,在PostGIS邮件列表的以下主题中,尝试似乎(1)使用与2D平面上的行距相同的公式确定大圆上的最近点(使用PostGIS'line_locate_point) ,然后(2)计算球体上第三点与第三点之间的距离。我不知道数学上的步骤(1)是否正确,但我会感到惊讶。

http://postgis.refractions.net/pipermail/postgis-users/2009-July/023903.html

最后,我刚看到以下链接在“相关”下:

Distance from Point To Line great circle function not working right.