我在地球上有一个线段(大圆圈部分)。线段由其末端的坐标定义。显然,两个点定义了两个线段,所以假设我对较短的线段感兴趣。
我得到第三点,我正在寻找线和点之间的(最短)距离。
所有坐标均以经度\纬度(WGS 84)给出。
如何计算距离?
任何合理的编程语言都可以使用解决方案。
答案 0 :(得分:18)
这是我自己的解决方案,基于ask Dr. Math中的想法。我很乐意看到您的反馈。
首先免责声明。这种解决方案适用于球体。地球不是一个球体,坐标系统(WGS 84)并不认为它是一个球体。所以这只是一个近似值,我无法估计是错误。此外,对于非常小的距离,通过假设所有东西都只是一个共面,它也可能得到很好的近似。我再一次不知道距离必须“小”。
现在开始营业。我将调用线A,B和第三点C的末端。基本上,算法是:
使用以下3个矢量积计算最接近C的AB线上的点:
G = A x B
F = C x G
T = G x F
将T标准化并乘以地球半径。
如果你正在寻找C和A和B定义的大圆之间的距离,这些步骤就足够了。如果像我一样你对C和较短线段之间的距离感兴趣,你需要采取额外的步骤验证T确实在此段上。如果不是,那么最近的点必然是A或B两端之一 - 最简单的方法是检查哪一个。
一般而言,三种载体产品背后的想法如下。第一个(G)给出了A和B大圆的平面(所以包含A,B和原点的平面)。第二个(F)给出了通过C并且垂直于G的大圆。然后T是由F和G定义的大圆的交点,通过归一化和乘以R得到正确的长度。
这是一些部分Java代码。
找到大圆圈上的最近点。输入和输出是长度为2的数组。中间阵列长度为3.
double[] nearestPointGreatCircle(double[] a, double[] b, double c[])
{
double[] a_ = toCartsian(a);
double[] b_ = toCartsian(b);
double[] c_ = toCartsian(c);
double[] G = vectorProduct(a_, b_);
double[] F = vectorProduct(c_, G);
double[] t = vectorProduct(G, F);
normalize(t);
multiplyByScalar(t, R_EARTH);
return fromCartsian(t);
}
找到细分上最近的点:
double[] nearestPointSegment (double[] a, double[] b, double[] c)
{
double[] t= nearestPointGreatCircle(a,b,c);
if (onSegment(a,b,t))
return t;
return (distance(a,c) < distance(b,c)) ? a : c;
}
这是一种测试点T的简单方法,我们知道它位于与A和B相同的大圆上,位于这个大圆的较短段上。但是,有更有效的方法可以做到这一点:
boolean onSegment (double[] a, double[] b, double[] t)
{
// should be return distance(a,t)+distance(b,t)==distance(a,b),
// but due to rounding errors, we use:
return Math.abs(distance(a,b)-distance(a,t)-distance(b,t)) < PRECISION;
}
答案 1 :(得分:3)
从Ask Dr. Math尝试Distance from a Point to a Great Circle。您仍然需要将经度/纬度转换为球面坐标并缩放地球半径,但这似乎是一个很好的方向。
答案 2 :(得分:1)
这是接受答案的完整代码,作为想法小提琴(找到here):
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
class Ideone
{
private static final double _eQuatorialEarthRadius = 6378.1370D;
private static final double _d2r = (Math.PI / 180D);
private static double PRECISION = 0.1;
// Haversine Algorithm
// source: http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates
private static double HaversineInM(double lat1, double long1, double lat2, double long2) {
return (1000D * HaversineInKM(lat1, long1, lat2, long2));
}
private static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
* Math.pow(Math.sin(dlong / 2D), 2D);
double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
// Distance between a point and a line
public static void pointLineDistanceTest() {
//line
//double [] a = {50.174315,19.054743};
//double [] b = {50.176019,19.065042};
double [] a = {52.00118, 17.53933};
double [] b = {52.00278, 17.54008};
//point
//double [] c = {50.184373,19.054657};
double [] c = {52.008308, 17.542927};
double[] nearestNode = nearestPointGreatCircle(a, b, c);
System.out.println("nearest node: " + Double.toString(nearestNode[0]) + "," + Double.toString(nearestNode[1]));
double result = HaversineInM(c[0], c[1], nearestNode[0], nearestNode[1]);
System.out.println("result: " + Double.toString(result));
}
// source: http://stackoverflow.com/questions/1299567/how-to-calculate-distance-from-a-point-to-a-line-segment-on-a-sphere
private static double[] nearestPointGreatCircle(double[] a, double[] b, double c[])
{
double[] a_ = toCartsian(a);
double[] b_ = toCartsian(b);
double[] c_ = toCartsian(c);
double[] G = vectorProduct(a_, b_);
double[] F = vectorProduct(c_, G);
double[] t = vectorProduct(G, F);
return fromCartsian(multiplyByScalar(normalize(t), _eQuatorialEarthRadius));
}
@SuppressWarnings("unused")
private static double[] nearestPointSegment (double[] a, double[] b, double[] c)
{
double[] t= nearestPointGreatCircle(a,b,c);
if (onSegment(a,b,t))
return t;
return (HaversineInKM(a[0], a[1], c[0], c[1]) < HaversineInKM(b[0], b[1], c[0], c[1])) ? a : b;
}
private static boolean onSegment (double[] a, double[] b, double[] t)
{
// should be return distance(a,t)+distance(b,t)==distance(a,b),
// but due to rounding errors, we use:
return Math.abs(HaversineInKM(a[0], a[1], b[0], b[1])-HaversineInKM(a[0], a[1], t[0], t[1])-HaversineInKM(b[0], b[1], t[0], t[1])) < PRECISION;
}
// source: http://stackoverflow.com/questions/1185408/converting-from-longitude-latitude-to-cartesian-coordinates
private static double[] toCartsian(double[] coord) {
double[] result = new double[3];
result[0] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.cos(Math.toRadians(coord[1]));
result[1] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.sin(Math.toRadians(coord[1]));
result[2] = _eQuatorialEarthRadius * Math.sin(Math.toRadians(coord[0]));
return result;
}
private static double[] fromCartsian(double[] coord){
double[] result = new double[2];
result[0] = Math.toDegrees(Math.asin(coord[2] / _eQuatorialEarthRadius));
result[1] = Math.toDegrees(Math.atan2(coord[1], coord[0]));
return result;
}
// Basic functions
private static double[] vectorProduct (double[] a, double[] b){
double[] result = new double[3];
result[0] = a[1] * b[2] - a[2] * b[1];
result[1] = a[2] * b[0] - a[0] * b[2];
result[2] = a[0] * b[1] - a[1] * b[0];
return result;
}
private static double[] normalize(double[] t) {
double length = Math.sqrt((t[0] * t[0]) + (t[1] * t[1]) + (t[2] * t[2]));
double[] result = new double[3];
result[0] = t[0]/length;
result[1] = t[1]/length;
result[2] = t[2]/length;
return result;
}
private static double[] multiplyByScalar(double[] normalize, double k) {
double[] result = new double[3];
result[0] = normalize[0]*k;
result[1] = normalize[1]*k;
result[2] = normalize[2]*k;
return result;
}
public static void main(String []args){
System.out.println("Hello World");
Ideone.pointLineDistanceTest();
}
}
它适用于评论数据:
//line
double [] a = {50.174315,19.054743};
double [] b = {50.176019,19.065042};
//point
double [] c = {50.184373,19.054657};
最近的节点是:50.17493121381319,19.05846668493702
但我对这些数据有疑问:
double [] a = {52.00118, 17.53933};
double [] b = {52.00278, 17.54008};
//point
double [] c = {52.008308, 17.542927};
最近的节点是:52.00834987257176,17.542691313436357哪个错了。
我认为由两点指定的行不是封闭的段。
答案 3 :(得分:1)
如果有人需要,这是一个移植到c#
的愚蠢的回答 private static double _eQuatorialEarthRadius = 6378.1370D;
private static double _d2r = (Math.PI / 180D);
private static double PRECISION = 0.1;
// Haversine Algorithm
// source: http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates
private static double HaversineInM(double lat1, double long1, double lat2, double long2) {
return (1000D * HaversineInKM(lat1, long1, lat2, long2));
}
private static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r)
* Math.Pow(Math.Sin(dlong / 2D), 2D);
double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
// Distance between a point and a line
static double pointLineDistanceGEO(double[] a, double[] b, double[] c)
{
double[] nearestNode = nearestPointGreatCircle(a, b, c);
double result = HaversineInKM(c[0], c[1], nearestNode[0], nearestNode[1]);
return result;
}
// source: http://stackoverflow.com/questions/1299567/how-to-calculate-distance-from-a-point-to-a-line-segment-on-a-sphere
private static double[] nearestPointGreatCircle(double[] a, double[] b, double [] c)
{
double[] a_ = toCartsian(a);
double[] b_ = toCartsian(b);
double[] c_ = toCartsian(c);
double[] G = vectorProduct(a_, b_);
double[] F = vectorProduct(c_, G);
double[] t = vectorProduct(G, F);
return fromCartsian(multiplyByScalar(normalize(t), _eQuatorialEarthRadius));
}
private static double[] nearestPointSegment (double[] a, double[] b, double[] c)
{
double[] t= nearestPointGreatCircle(a,b,c);
if (onSegment(a,b,t))
return t;
return (HaversineInKM(a[0], a[1], c[0], c[1]) < HaversineInKM(b[0], b[1], c[0], c[1])) ? a : b;
}
private static bool onSegment (double[] a, double[] b, double[] t)
{
// should be return distance(a,t)+distance(b,t)==distance(a,b),
// but due to rounding errors, we use:
return Math.Abs(HaversineInKM(a[0], a[1], b[0], b[1])-HaversineInKM(a[0], a[1], t[0], t[1])-HaversineInKM(b[0], b[1], t[0], t[1])) < PRECISION;
}
// source: http://stackoverflow.com/questions/1185408/converting-from-longitude-latitude-to-cartesian-coordinates
private static double[] toCartsian(double[] coord) {
double[] result = new double[3];
result[0] = _eQuatorialEarthRadius * Math.Cos(deg2rad(coord[0])) * Math.Cos(deg2rad(coord[1]));
result[1] = _eQuatorialEarthRadius * Math.Cos(deg2rad(coord[0])) * Math.Sin(deg2rad(coord[1]));
result[2] = _eQuatorialEarthRadius * Math.Sin(deg2rad(coord[0]));
return result;
}
private static double[] fromCartsian(double[] coord){
double[] result = new double[2];
result[0] = rad2deg(Math.Asin(coord[2] / _eQuatorialEarthRadius));
result[1] = rad2deg(Math.Atan2(coord[1], coord[0]));
return result;
}
// Basic functions
private static double[] vectorProduct (double[] a, double[] b){
double[] result = new double[3];
result[0] = a[1] * b[2] - a[2] * b[1];
result[1] = a[2] * b[0] - a[0] * b[2];
result[2] = a[0] * b[1] - a[1] * b[0];
return result;
}
private static double[] normalize(double[] t) {
double length = Math.Sqrt((t[0] * t[0]) + (t[1] * t[1]) + (t[2] * t[2]));
double[] result = new double[3];
result[0] = t[0]/length;
result[1] = t[1]/length;
result[2] = t[2]/length;
return result;
}
private static double[] multiplyByScalar(double[] normalize, double k) {
double[] result = new double[3];
result[0] = normalize[0]*k;
result[1] = normalize[1]*k;
result[2] = normalize[2]*k;
return result;
}
答案 4 :(得分:1)
对于几千米的距离,我会简化从球到平面的问题。 然后,问题非常简单,因为可以使用简单的三角形计算:
我们有A点和B点,并寻找到AB线的距离X.然后:
Location a;
Location b;
Location x;
double ax = a.distanceTo(x);
double alfa = (Math.abs(a.bearingTo(b) - a.bearingTo(x))) / 180
* Math.PI;
double distance = Math.sin(alfa) * ax;
答案 5 :(得分:0)
球体上两点之间的最短距离是通过这两点的大圆的较小边。我相信你已经知道了。这里有一个类似的问题http://www.physicsforums.com/archive/index.php/t-178252.html可以帮助您以数学方式对其进行建模。
说实话,我不确定你有多大可能得到一个这样的编码例子。
答案 6 :(得分:0)
我现在基本上都在寻找相同的东西,除了我严格地说不关心有一个大圆圈的一段,而只是想要距离整圆的任何一点。
我目前正在调查的两个链接:
This page提到“跨轨道距离”,这基本上就是您正在寻找的。 p>
此外,在PostGIS邮件列表的以下主题中,尝试似乎(1)使用与2D平面上的行距相同的公式确定大圆上的最近点(使用PostGIS'line_locate_point) ,然后(2)计算球体上第三点与第三点之间的距离。我不知道数学上的步骤(1)是否正确,但我会感到惊讶。
http://postgis.refractions.net/pipermail/postgis-users/2009-July/023903.html
最后,我刚看到以下链接在“相关”下:
Distance from Point To Line great circle function not working right.