我有一些代码可以在地图中进行基本光线追踪,以确定光线是否撞到了墙壁。
[编辑]:y_coords和x_coords的大小通常为18x1000(对应点)。 self.map是800x800
def ray_trace(self, x, y, x_coords, y_coords):
ray_distances = []
resolution = self.parameters['resolution']
for i in range(x_coords.shape[0]):
distance = 0
# filter x and y coords to stay within map regions
ray_range = np.bitwise_and(x_coords[i]<799,y_coords[i]<799)
# determine ending index where the ray stops
len_ray = ray_range[ray_range==True].shape[0]
# zip up the x and y coords
ray_coords = np.c_[x_coords[i,0:len_ray], y_coords[i,0:len_ray]]
# look up all the coordinates in the map and find where the map is
# less than or equal to zero (this is a wall)
ray_values, = np.where(self.map[tuple(ray_coords.T)] <= 0)
# some special exceptions
if not ray_values.shape[0]:
if not len(ray_coords):
end_of_ray = np.array([x/resolution, y/resolution])
else:
end_of_ray = ray_coords[len(ray_values)]
else:
# get the end of the ray
end_of_ray = ray_coords[ray_values.item(0)]
# find the distance from the originating point
distance = math.sqrt((end_of_ray.item(0) - x/resolution)**2 +
(end_of_ray.item(1) - y/resolution)**2)
ray_distances.append(distance)
return ray_distances
我在np.c_和np.where行中遇到了问题 - 我用kernprof.py描述了它们和那些行,并且它们花费了很长时间(尤其是np.c_,它占用了50%的时间)。有没有人对如何优化这个有任何想法?
答案 0 :(得分:2)
你真的不需要那么多玩指数。高级索引意味着您可以使用两个大小相等的坐标数组进行索引,而无需先将它们组合成坐标。
coord_mask = (x_coords < 799) & (y_coords < 799)
for i in xrange(len(coord_mask)):
distance = 0
row_mask = coord_mask[i]
row_x = x_coords[i, row_mask]
row_y = y_coords[i, row_mask]
mapvals = self.map[row_x, row_y] # advanced indexing
ray_values, = (mapvals <= 0).nonzero()
...