在java中计算行列式计算

时间:2012-09-10 00:45:31

标签: java matrix

我正在使用伴随方法计算矩阵的逆矩阵。首先,我必须计算矩阵的行列式。为了计算行列式,我首先创建一个上三角矩阵,然后乘以对角线以得到矩阵的行列式。下面给出了计算行列式的公式。

for(int cr = 1 ;cr < dd.length;cr++)
{ double factor = 0.0;      
  final   double[] firstrow = new double[dd.length] ; /* dd is a matrix*/

  for(int r = 0 ;r < dd.length; r++)  
 { firstrow[r] = dd[cr - 1][r]; }

for( int rowcount = cr + 0 ; rowcount< dd.length ; rowcount++)
{           
  factor = dd[rowcount][cr - 1] / firstrow[cr - 1];

for( int m = cr - 1 ; m < firstrow.length ; m++)
{  
dd[cr - 1][m] = firstrow[m] * factor;               /* multioly row by factor */                                                
dd[rowcount][m] = dd[rowcount][m] - dd[cr - 1][m];  /* our current row minus factored row */
dd[cr - 1][m] = firstrow[m];                        /* restore the original values to row */    
}    }} 

for(int d = 0 ; d < dd.length;d++)
{det *= dd[d][d];}    /* det is the determinant */
在得到下三角矩阵后,对角线值的乘积成为矩阵的行列式。我尝试过这种方法,但它确实有效。然而,当我用它计算具有浮点值的13乘13矩阵的行列式时,我得到一个不是NaN作为行列式的数值。 有人可以向我解释发生了什么。 我有以下矩阵的示例值。

65.15078176822551
 731.664756199619
 1.5309584518179011E9
 1.7388182254012366E11
 3.3604905770182707E17
 1.77135880331128576E17

谢天谢地

2 个答案:

答案 0 :(得分:1)

我怀疑这个问题与你使用factor(我猜)减少数字的规模有关。我敢打赌,对于某些索引,firstrow[cr - 1]为零。随后的除零将创建INF或NaN,并将通过计算的其余部分传播。


顺便提一下,这个“公式”看起来不像计算行列式的标准方法,如下所述:

http://www.math.dartmouth.edu/archive/m8s00/public_html/handouts/matrices3/node7.html

标准版不涉及任何划分。你确定你的“公式”是正确的吗?

答案 1 :(得分:0)

尝试此操作,您将获得具有任意维度的矩阵的精确行列式。

此类使用许多不同的方法使矩阵为三角形,然后计算其行列式。它可以用于500 x 500甚至更大的高尺寸矩阵。此类的优点是,您可以获得 BigDecimal的结果,因此没有无限,并且您将始终获得准确的答案。顺便说一句,使用许多种方法并避免递归会导致更快的方法和更高的答案性能。希望对您有所帮助。

import java.math.BigDecimal;


public class DeterminantCalc {

private double[][] matrix;
private int sign = 1;


DeterminantCalc(double[][] matrix) {
    this.matrix = matrix;
}

public int getSign() {
    return sign;
}

public BigDecimal determinant() {

    BigDecimal deter;
    if (isUpperTriangular() || isLowerTriangular())
        deter = multiplyDiameter().multiply(BigDecimal.valueOf(sign));

    else {
        makeTriangular();
        deter = multiplyDiameter().multiply(BigDecimal.valueOf(sign));

    }
    return deter;
}


/*  receives a matrix and makes it triangular using allowed operations
    on columns and rows
*/
public void makeTriangular() {

    for (int j = 0; j < matrix.length; j++) {
        sortCol(j);
        for (int i = matrix.length - 1; i > j; i--) {
            if (matrix[i][j] == 0)
                continue;

            double x = matrix[i][j];
            double y = matrix[i - 1][j];
            multiplyRow(i, (-y / x));
            addRow(i, i - 1);
            multiplyRow(i, (-x / y));
        }
    }
}


public boolean isUpperTriangular() {

    if (matrix.length < 2)
        return false;

    for (int i = 0; i < matrix.length; i++) {
        for (int j = 0; j < i; j++) {
            if (matrix[i][j] != 0)
                return false;

        }

    }
    return true;
}


public boolean isLowerTriangular() {

    if (matrix.length < 2)
        return false;

    for (int j = 0; j < matrix.length; j++) {
        for (int i = 0; j > i; i++) {
            if (matrix[i][j] != 0)
                return false;

        }

    }
    return true;
}


public BigDecimal multiplyDiameter() {

    BigDecimal result = BigDecimal.ONE;
    for (int i = 0; i < matrix.length; i++) {
        for (int j = 0; j < matrix.length; j++) {
            if (i == j)
                result = result.multiply(BigDecimal.valueOf(matrix[i][j]));

        }

    }
    return result;
}


// when matrix[i][j] = 0 it makes it's value non-zero
public void makeNonZero(int rowPos, int colPos) {

    int len = matrix.length;

    outer:
    for (int i = 0; i < len; i++) {
        for (int j = 0; j < len; j++) {
            if (matrix[i][j] != 0) {
                if (i == rowPos) { // found "!= 0" in it's own row, so cols must be added
                    addCol(colPos, j);
                    break outer;

                }
                if (j == colPos) { // found "!= 0" in it's own col, so rows must be added
                    addRow(rowPos, i);
                    break outer;
                }
            }
        }
    }
}


//add row1 to row2 and store in row1
public void addRow(int row1, int row2) {

    for (int j = 0; j < matrix.length; j++)
        matrix[row1][j] += matrix[row2][j];
}


//add col1 to col2 and store in col1
public void addCol(int col1, int col2) {

    for (int i = 0; i < matrix.length; i++)
        matrix[i][col1] += matrix[i][col2];
}


//multiply the whole row by num
public void multiplyRow(int row, double num) {

    if (num < 0)
        sign *= -1;


    for (int j = 0; j < matrix.length; j++) {
        matrix[row][j] *= num;
    }
}


//multiply the whole column by num
public void multiplyCol(int col, double num) {

    if (num < 0)
        sign *= -1;

    for (int i = 0; i < matrix.length; i++)
        matrix[i][col] *= num;

}


// sort the cols from the biggest to the lowest value
public void sortCol(int col) {

    for (int i = matrix.length - 1; i >= col; i--) {
        for (int k = matrix.length - 1; k >= col; k--) {
            double tmp1 = matrix[i][col];
            double tmp2 = matrix[k][col];

            if (Math.abs(tmp1) < Math.abs(tmp2))
                replaceRow(i, k);
        }
    }
}


//replace row1 with row2
public void replaceRow(int row1, int row2) {

    if (row1 != row2)
        sign *= -1;

    double[] tempRow = new double[matrix.length];

    for (int j = 0; j < matrix.length; j++) {
        tempRow[j] = matrix[row1][j];
        matrix[row1][j] = matrix[row2][j];
        matrix[row2][j] = tempRow[j];
    }
}


//replace col1 with col2
public void replaceCol(int col1, int col2) {

    if (col1 != col2)
        sign *= -1;

    System.out.printf("replace col%d with col%d, sign = %d%n", col1, col2, sign);
    double[][] tempCol = new double[matrix.length][1];

    for (int i = 0; i < matrix.length; i++) {
        tempCol[i][0] = matrix[i][col1];
        matrix[i][col1] = matrix[i][col2];
        matrix[i][col2] = tempCol[i][0];
    }
}

}

然后,此类从用户那里接收n x n的矩阵,或者可以生成nxn的随机矩阵,然后计算它的行​​列式。它还显示了解和最终的三角矩阵。

import java.math.BigDecimal;
import java.security.SecureRandom;
import java.text.NumberFormat;
import java.util.Scanner;


public class DeterminantTest {

public static void main(String[] args) {

    String determinant;

    //generating random numbers
int len = 500;
SecureRandom random = new SecureRandom();
double[][] matrix = new double[len][len];

for (int i = 0; i < len; i++) {
    for (int j = 0; j < len; j++) {
        matrix[i][j] = random.nextInt(500);
        System.out.printf("%15.2f", matrix[i][j]);
    }
}
System.out.println();

/*double[][] matrix = {
    {1, 5, 2, -2, 3, 2, 5, 1, 0, 5},
    {4, 6, 0, -2, -2, 0, 1, 1, -2, 1},
    {0, 5, 1, 0, 1, -5, -9, 0, 4, 1},
    {2, 3, 5, -1, 2, 2, 0, 4, 5, -1},
    {1, 0, 3, -1, 5, 1, 0, 2, 0, 2},
    {1, 1, 0, -2, 5, 1, 2, 1, 1, 6},
    {1, 0, 1, -1, 1, 1, 0, 1, 1, 1},
    {1, 5, 5, 0, 3, 5, 5, 0, 0, 6},
    {1, -5, 2, -2, 3, 2, 5, 1, 1, 5},
    {1, 5, -2, -2, 3, 1, 5, 0, 0, 1}
};

    double[][] matrix = menu();*/

    DeterminantCalc deter = new DeterminantCalc(matrix);

    BigDecimal det = deter.determinant();

    determinant = NumberFormat.getInstance().format(det);

    for (int i = 0; i < matrix.length; i++) {
        for (int j = 0; j < matrix.length; j++) {
            System.out.printf("%15.2f", matrix[i][j]);
        }
        System.out.println();
    }

    System.out.println();
    System.out.printf("%s%s%n", "Determinant: ", determinant);
    System.out.printf("%s%d", "sign: ", deter.getSign());

}


public static double[][] menu() {

    Scanner scanner = new Scanner(System.in);

    System.out.print("Matrix Dimension: ");
    int dim = scanner.nextInt();

    double[][] inputMatrix = new double[dim][dim];

    System.out.println("Set the Matrix: ");
    for (int i = 0; i < dim; i++) {
        System.out.printf("%5s%d%n", "row", i + 1);
        for (int j = 0; j < dim; j++) {

            System.out.printf("M[%d][%d] = ", i + 1, j + 1);
            inputMatrix[i][j] = scanner.nextDouble();
        }
        System.out.println();
    }
    scanner.close();

    return inputMatrix;
}

}