我一直在尝试使用OpenCV stereoRectifyUncalibrated纠正和构建一对图像的差异,但是我没有得到很好的结果。我的代码是:
template<class T>
T convertNumber(string& number)
{
istringstream ss(number);
T t;
ss >> t;
return t;
}
void readPoints(vector<Point2f>& points, string filename)
{
fstream filest(filename.c_str(), ios::in);
string line;
assert(filest != NULL);
getline(filest, line);
do{
int posEsp = line.find_first_of(' ');
string posX = line.substr(0, posEsp);
string posY = line.substr(posEsp+1, line.size() - posEsp);
float X = convertNumber<float>(posX);
float Y = convertNumber<float>(posY);
Point2f pnt = Point2f(X, Y);
points.push_back(pnt);
getline(filest, line);
}while(!filest.eof());
filest.close();
}
void drawKeypointSequence(Mat lFrame, Mat rFrame, vector<KeyPoint>& lKeyp, vector<KeyPoint>& rKeyp)
{
namedWindow("prevFrame", WINDOW_AUTOSIZE);
namedWindow("currFrame", WINDOW_AUTOSIZE);
moveWindow("prevFrame", 0, 300);
moveWindow("currFrame", 650, 300);
Mat rFrameAux;
rFrame.copyTo(rFrameAux);
Mat lFrameAux;
lFrame.copyTo(lFrameAux);
int size = rKeyp.size();
for(int i=0; i<size; i++)
{
vector<KeyPoint> drawRightKeyp;
vector<KeyPoint> drawleftKeyp;
drawRightKeyp.push_back(rKeyp[i]);
drawleftKeyp.push_back(lKeyp[i]);
cout << rKeyp[i].pt << " <<<>>> " << lKeyp[i].pt << endl;
drawKeypoints(rFrameAux, drawRightKeyp, rFrameAux, Scalar::all(255), DrawMatchesFlags::DRAW_OVER_OUTIMG);
drawKeypoints(lFrameAux, drawleftKeyp, lFrameAux, Scalar::all(255), DrawMatchesFlags::DRAW_OVER_OUTIMG);
imshow("currFrame", rFrameAux);
imshow("prevFrame", lFrameAux);
waitKey(0);
}
imwrite("RightKeypFrame.jpg", rFrameAux);
imwrite("LeftKeypFrame.jpg", lFrameAux);
}
int main(int argc, char* argv[])
{
StereoBM stereo(StereoBM::BASIC_PRESET, 16*5, 21);
double ndisp = 16*4;
assert(argc == 5);
string rightImgFilename(argv[1]); // Right image (current frame)
string leftImgFilename(argv[2]); // Left image (previous frame)
string rightPointsFilename(argv[3]); // Right image points file
string leftPointsFilename(argv[4]); // Left image points file
Mat rightFrame = imread(rightImgFilename.c_str(), 0);
Mat leftFrame = imread(leftImgFilename.c_str(), 0);
vector<Point2f> rightPoints;
vector<Point2f> leftPoints;
vector<KeyPoint> rightKeyp;
vector<KeyPoint> leftKeyp;
readPoints(rightPoints, rightPointsFilename);
readPoints(leftPoints, leftPointsFilename);
assert(rightPoints.size() == leftPoints.size());
KeyPoint::convert(rightPoints, rightKeyp);
KeyPoint::convert(leftPoints, leftKeyp);
// Desenha os keypoints sequencialmente, de forma a testar a consistência do matching
drawKeypointSequence(leftFrame, rightFrame, leftKeyp, rightKeyp);
Mat fundMatrix = findFundamentalMat(leftPoints, rightPoints, CV_FM_8POINT);
Mat homRight;
Mat homLeft;
Mat disp16 = Mat(rightFrame.rows, leftFrame.cols, CV_16S);
Mat disp8 = Mat(rightFrame.rows, leftFrame.cols, CV_8UC1);
stereoRectifyUncalibrated(leftPoints, rightPoints, fundMatrix, rightFrame.size(), homLeft, homRight);
warpPerspective(rightFrame, rightFrame, homRight, rightFrame.size());
warpPerspective(leftFrame, leftFrame, homLeft, leftFrame.size());
namedWindow("currFrame", WINDOW_AUTOSIZE);
namedWindow("prevFrame", WINDOW_AUTOSIZE);
moveWindow("currFrame", 650, 300);
moveWindow("prevFrame", 0, 300);
imshow("currFrame", rightFrame);
imshow("prevFrame", leftFrame);
imwrite("RectfRight.jpg", rightFrame);
imwrite("RectfLeft.jpg", leftFrame);
waitKey(0);
stereo(rightFrame, leftFrame, disp16, CV_16S);
disp16.convertTo(disp8, CV_8UC1, 255/ndisp);
FileStorage file("disp_map.xml", FileStorage::WRITE);
file << "disparity" << disp8;
file.release();
imshow("disparity", disp8);
imwrite("disparity.jpg", disp8);
moveWindow("disparity", 0, 0);
waitKey(0);
}
drawKeyPoint序列是我直观地检查两个图像的点的一致性的方式。通过按顺序绘制每个关键点,我可以确定图像A上的关键点i是图像B上的关键点i。
我也尝试过使用ndisp参数,但它没有多大帮助。
我尝试了以下一对图片:
得到以下纠正对:
最后,以下视差图
正如你所看到的那样,非常糟糕。我还使用以下stereoRectifyUncalibrated示例尝试了同一对图像:http://programmingexamples.net/wiki/OpenCV/WishList/StereoRectifyUncalibrated和来自opencv教程代码示例的SBM_Sample.cpp来构建视差图,并得到了非常相似的结果。
我正在使用opencv 2.4
提前致谢!
答案 0 :(得分:2)
除了可能的校准问题,您的图像显然缺少一些纹理,以便立体块匹配工作。 该算法将在平坦(非tetxured)零件上看到许多模糊和太大的差异。
但请注意,关键点似乎匹配得很好,所以即使整流输出看起来很奇怪,也可能是正确的。
您可以根据Middlebury stereo page中的标准图像测试代码,以进行完整性检查。
答案 1 :(得分:0)
我建议使用棋盘进行立体声校准,或者使用棋盘拍摄多张照片并在计算机上使用stereocalibrate.cpp
。我这样说是因为你使用stereorectifyuncalibrated
,虽然算法不需要知道摄像机的内部参数,但它在很大程度上取决于极线几何。因此,如果相机镜头有明显的失真,最好在计算基本矩阵并调用此功能之前进行校正。例如,可以使用calibrateCamera()
分别为立体相机的每个头估计失真系数。然后,可以使用undistort()
更正图像,或者只使用undistortPoints()
更正点坐标。