K-means算法变化,最小尺寸

时间:2012-06-18 20:04:46

标签: r maps cluster-analysis k-means

我正在寻找一些算法,例如k-means,用于按地点将地图上的点分组为固定数量的组。 团体的数量已经确定,但诀窍部分(至少对我来说)是满足每个组的MOS总和应该在一定范围内的标准,比如大于1.有没有办法让发生?

ID MOS          X        Y

1 0.47   39.27846 -76.77101    
2 0.43   39.22704 -76.70272    
3 1.48   39.24719 -76.68485    
4 0.15   39.25172 -76.69729    
5 0.09   39.24341 -76.69884  

1 个答案:

答案 0 :(得分:3)

我对您的问题很感兴趣,但不确定如何将某种随机过程引入分组算法。如果你置换数据集(例如行的顺序),似乎kmeans算法确实给出了不同的结果。我发现了这一点信息here。以下脚本使用随机数据集演示此内容。该图以黑色显示原始数据,然后通过排列(颜色)将一个段绘制到每个簇的中心。

由于我不确定如何定义MOS变量,因此我在数据帧中添加了一个随机变量,以说明如何查找满足给定条件的聚类。计算每个簇的MOS总和,并将结果存储在MOS.sums对象中。为了重现有利的聚类,您可以使用用于置换的随机种子值,该值存储在种子对象中。您可以看到排列结果是几个不同的聚类:

set.seed(33)
nsamples=500
nperms=10
nclusters=3

df <- data.frame(x=runif(nsamples), y=runif(nsamples), MOS=runif(nsamples))

MOS.sums <- matrix(NaN, nrow=nperms, ncol=nclusters)
colnames(MOS.sums) <- paste("cluster", 1:nclusters, sep=".")
rownames(MOS.sums) <- paste("perm", 1:nperms, sep=".")

seeds <- round(runif(nperms, min=1, max=10000))

    plot(df$x, df$y)
COL <- rainbow(nperms)
for(i in seq(nperms)){
    set.seed(seeds[i])
    ORD <- sample(nsamples)
    K <- kmeans(df[ORD,1:2], centers=nclusters)
    MOS.sums[i,] <- tapply(df$MOS[ORD], K$cluster, sum)
    segments(df$x[ORD], df$y[ORD], K$centers[K$cluster,1], K$centers[K$cluster,2], col=COL[i])
}
seeds
MOS.sums 

enter image description here