我正在尝试使用OpenGL,Eigen3和"Jacobian pseudoinverse"方法实现简单的逆运动学测试。
使用“雅可比转置”算法系统工作正常,但是,一旦我尝试使用“伪逆”,关节变得不稳定并开始抖动(最终它们完全冻结 - 除非我使用“雅可比转置”回退计算) 。我已经调查了这个问题,结果证明在某些情况下Jacobian.inverse()*雅可比行列式具有零行列式并且不能被反转。但是,我在互联网上看过其他演示(Youtube)声称使用相同的方法,他们似乎没有这个问题。所以我不确定问题的原因在哪里。代码如下:
* H:
struct Ik{
float targetAngle;
float ikLength;
VectorXf angles;
Vector3f root, target;
Vector3f jointPos(int ikIndex);
size_t size() const;
Vector3f getEndPos(int index, const VectorXf& vec);
void resize(size_t size);
void update(float t);
void render();
Ik(): targetAngle(0), ikLength(10){
}
};
* CPP:
size_t Ik::size() const{
return angles.rows();
}
Vector3f Ik::getEndPos(int index, const VectorXf& vec){
Vector3f pos(0, 0, 0);
while(true){
Eigen::Affine3f t;
float radAngle = pi*vec[index]/180.0f;
t = Eigen::AngleAxisf(radAngle, Vector3f(-1, 0, 0))
* Eigen::Translation3f(Vector3f(0, 0, ikLength));
pos = t * pos;
if (index == 0)
break;
index--;
}
return pos;
}
void Ik::resize(size_t size){
angles.resize(size);
angles.setZero();
}
void drawMarker(Vector3f p){
glBegin(GL_LINES);
glVertex3f(p[0]-1, p[1], p[2]);
glVertex3f(p[0]+1, p[1], p[2]);
glVertex3f(p[0], p[1]-1, p[2]);
glVertex3f(p[0], p[1]+1, p[2]);
glVertex3f(p[0], p[1], p[2]-1);
glVertex3f(p[0], p[1], p[2]+1);
glEnd();
}
void drawIkArm(float length){
glBegin(GL_LINES);
float f = 0.25f;
glVertex3f(0, 0, length);
glVertex3f(-f, -f, 0);
glVertex3f(0, 0, length);
glVertex3f(f, -f, 0);
glVertex3f(0, 0, length);
glVertex3f(f, f, 0);
glVertex3f(0, 0, length);
glVertex3f(-f, f, 0);
glEnd();
glBegin(GL_LINE_LOOP);
glVertex3f(f, f, 0);
glVertex3f(-f, f, 0);
glVertex3f(-f, -f, 0);
glVertex3f(f, -f, 0);
glEnd();
}
void Ik::update(float t){
targetAngle += t * pi*2.0f/10.0f;
while (t > pi*2.0f)
t -= pi*2.0f;
target << 0, 8 + 3*sinf(targetAngle), cosf(targetAngle)*4.0f+5.0f;
Vector3f tmpTarget = target;
Vector3f targetDiff = tmpTarget - root;
float l = targetDiff.norm();
float maxLen = ikLength*(float)angles.size() - 0.01f;
if (l > maxLen){
targetDiff *= maxLen/l;
l = targetDiff.norm();
tmpTarget = root + targetDiff;
}
Vector3f endPos = getEndPos(size()-1, angles);
Vector3f diff = tmpTarget - endPos;
float maxAngle = 360.0f/(float)angles.size();
for(int loop = 0; loop < 1; loop++){
MatrixXf jacobian(diff.rows(), angles.rows());
jacobian.setZero();
float step = 1.0f;
for (int i = 0; i < angles.size(); i++){
Vector3f curRoot = root;
if (i)
curRoot = getEndPos(i-1, angles);
Vector3f axis(1, 0, 0);
Vector3f n = endPos - curRoot;
float l = n.norm();
if (l)
n /= l;
n = n.cross(axis);
if (l)
n *= l*step*pi/180.0f;
//std::cout << n << "\n";
for (int j = 0; j < 3; j++)
jacobian(j, i) = n[j];
}
std::cout << jacobian << std::endl;
MatrixXf jjt = jacobian.transpose()*jacobian;
//std::cout << jjt << std::endl;
float d = jjt.determinant();
MatrixXf invJ;
float scale = 0.1f;
if (!d /*|| true*/){
invJ = jacobian.transpose();
scale = 5.0f;
std::cout << "fallback to jacobian transpose!\n";
}
else{
invJ = jjt.inverse()*jacobian.transpose();
std::cout << "jacobian pseudo-inverse!\n";
}
//std::cout << invJ << std::endl;
VectorXf add = invJ*diff*step*scale;
//std::cout << add << std::endl;
float maxSpeed = 15.0f;
for (int i = 0; i < add.size(); i++){
float& cur = add[i];
cur = std::max(-maxSpeed, std::min(maxSpeed, cur));
}
angles += add;
for (int i = 0; i < angles.size(); i++){
float& cur = angles[i];
if (i)
cur = std::max(-maxAngle, std::min(maxAngle, cur));
}
}
}
void Ik::render(){
glPushMatrix();
glTranslatef(root[0], root[1], root[2]);
for (int i = 0; i < angles.size(); i++){
glRotatef(angles[i], -1, 0, 0);
drawIkArm(ikLength);
glTranslatef(0, 0, ikLength);
}
glPopMatrix();
drawMarker(target);
for (int i = 0; i < angles.size(); i++)
drawMarker(getEndPos(i, angles));
}
答案 0 :(得分:4)
听起来你的系统太僵硬了。
编辑:我没有阅读你的大量帖子,所以我删除了对弹簧的引用。我想在你的情况下,元素会有某种形式的机械交互。
答案 1 :(得分:1)
这样的事情应该有效。
VectorXf solveViaSVD(const MatrixXf & jacobian,const VectorXf & diff) {
Eigen::JacobiSVD<MatrixXf> svd (jacobian,ComputeThinU | ComputeThinV);
return svd.solve(diff);
}
问题是,如你所说,当(J*J'
)是单数时,你的方法无法计算伪逆。
Wikipedia说:“[pseudoinverse]是通过将每个非零对角线条目替换为它的倒数”而形成的。将pinv(A)
计算为inv(A'*A)*A'
会使“非零”点失效。