我正在使用直接标签来注释我的情节。正如你在这张图片中看到的那样,标签是在geom_line之后,但是我想在geom_smooth之后使用它们。这是直接标签支持的吗?或任何其他想法如何实现这一目标?提前谢谢!
这是我的代码:
library("ggplot2")
set.seed(124234345)
# Generate data
df.2 <- data.frame("n_gram" = c("word1"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000))
df.2 <- rbind(df.2, data.frame("n_gram" = c("word2"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000)) )
# plot
ggplot(df.2, aes(year, match_count, group=n_gram, color=n_gram)) +
geom_line(alpha = I(7/10), color="grey", show_guide=F) +
stat_smooth(size=2, span=0.3, se=F, show_guide=F) +
geom_dl(aes(label=n_gram), method = "last.bumpup", show_guide=F) +
xlim(c(100,220))
答案 0 :(得分:4)
此答案采用@ celt-Ail答案的基本概念,而不是函数,基数R和直接标签,而是尝试一种整齐的方法,从here窃取了多个loess
的代码模型。
很高兴听到建议的改进。
set.seed(124234345)
# Generate data
df.2 <- data.frame("n_gram" = c("word1"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000))
df.2 <- rbind(df.2, data.frame("n_gram" = c("word2"),
"year" = rep(100:199),
"match_count" = runif(100 ,min = 1000 , max = 2000)) )
#example of loess for multiple models
#https://stackoverflow.com/a/55127487/4927395
library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
models <- df.2 %>%
tidyr::nest(-n_gram) %>%
dplyr::mutate(
# Perform loess calculation on each CpG group
m = purrr::map(data, loess,
formula = match_count ~ year, span = .3),
# Retrieve the fitted values from each model
fitted = purrr::map(m, `[[`, "fitted")
)
# Apply fitted y's as a new column
results <- models %>%
dplyr::select(-m) %>%
tidyr::unnest()
#find final x values for each group
my_last_points <- results %>% group_by(n_gram) %>% summarise(year = max(year, na.rm=TRUE))
#Join dataframe of predictions to group labels
my_last_points$pred_y <- left_join(my_last_points, results)
# Plot with loess line for each group
ggplot(results, aes(x = year, y = match_count, group = n_gram, colour = n_gram)) +
geom_line(alpha = I(7/10), color="grey", show.legend=F) +
#stat_smooth(size=2, span=0.3, se=F, show_guide=F)
geom_point() +
geom_line(aes(y = fitted))+
geom_text(data = my_last_points, aes(x=year+5, y=pred_y$fitted, label = n_gram))
答案 1 :(得分:1)
# use stat smooth with geom_dl to get matching direct labels.
span <- 0.3
ggplot(df.2, aes(year, match_count, group=n_gram, color=n_gram)) +
geom_line(alpha = I(7/10), color="grey") +
stat_smooth(size=2, span=span, se=F) +
geom_dl(aes(label=n_gram), method = "last.qp", stat="smooth", span=span) +
xlim(c(100,220))+
guides(colour="none")
答案 2 :(得分:-1)
这不是你要求的,因为我不知道如何做到这一点,但这可能对你更有用,因为你会减少标签的绘图区域:
PLOT <- ggplot(df.2, aes(year, match_count, group=n_gram, color=n_gram)) +
geom_line(alpha = I(7/10), color="grey", show_guide=F) +
stat_smooth(size=2, span=0.3, se=F, show_guide=F)
mymethod <- list(
"top.points",
dl.move("word1", hjust=-6.65, vjust=13),
dl.move("word2", hjust =-7.9, vjust=20.25)
)
direct.label(PLOT, mymethod)
产生:
您也可以尝试:
mymethod <- list(
"top.points",
dl.move("word1", hjust=-6, vjust=14),
dl.move("word2", hjust =-7.1, vjust=19.5)
)
ggplot(df.2, aes(year, match_count, group=n_gram, color=n_gram)) +
geom_line(alpha = I(7/10), color="grey", show_guide=F) +
xlim(c(100,220))+
stat_smooth(size=2, span=0.3, se=F, show_guide=F) +
geom_dl(aes(label=n_gram), method = mymethod, show_guide=F)
产生:
注意:要打印到其他图形设备(这是Windows rgui),您需要调整vjust并调整以适应。但如果有更直接的方式会更好。
答案 3 :(得分:-3)
我会在这里回答我自己的问题,因为我想出了感谢Tyler Rinker的回应。
这就是我用loess()来解决它以获得标签位置的方法。
# Function to get last Y-value from loess
funcDlMove <- function (n_gram) {
model <- loess(match_count ~ year, df.2[df.2$n_gram==n_gram,], span=0.3)
Y <- model$fitted[length(model$fitted)]
Y <- dl.move(n_gram, y=Y,x=200)
return(Y)
}
index <- unique(df.2$n_gram)
mymethod <- list(
"top.points",
lapply(index, funcDlMove)
)
# Plot
PLOT <- ggplot(df.2, aes(year, match_count, group=n_gram, color=n_gram)) +
geom_line(alpha = I(7/10), color="grey", show_guide=F) +
stat_smooth(size=2, span=0.3, se=F, show_guide=F)
direct.label(PLOT, mymethod)