我在2D中有三个点,我想绘制一条穿过它们的二次贝塞尔曲线。如何在quadTo中计算中间控制点(x1
和y1
)?我知道大学的线性代数但需要一些简单的帮助。
如何计算中间控制点,以便曲线也通过它?
答案 0 :(得分:49)
设P0,P1,P2为控制点,Pc为您希望曲线通过的固定点。
然后贝塞尔曲线由
定义P(t) = P0*t^2 + P1*2*t*(1-t) + P2*(1-t)^2
...其中t从零变为1.
你的问题有无数的答案,因为它可能会通过你的点来获得任何t值...所以只需选择一个,如t = 0.5,并解决P1:
Pc = P0*.25 + P1*2*.25 + P2*.25
P1 = (Pc - P0*.25 - P2*.25)/.5
= 2*Pc - P0/2 - P2/2
“P”值是(x,y)对,所以只需对x应用一次方程式,对y应用一次:
x1 = 2*xc - x0/2 - x2/2
y1 = 2*yc - y0/2 - y2/2
...其中(xc,yc)是您希望它通过的点,(x0,y0)是起点,(x2,y2)是终点。这将为您提供一个在t = 0.5时通过(xc,yc)的Bezier。
答案 1 :(得分:4)
我在我的JavaFX应用程序中使用了Nemos答案,但我的目标是绘制曲线,以便曲线的视觉转折点始终适合选择的固定曲线(CP)。
CP = ControlPoint
SP = StartPoint
EP =终点
BP(t)=BeziérCurve上的变量点,其中t介于0和1之间
为了达到这个目的,我做了一个变量t(不是固定0.5)。如果选择的点CP不再位于SP和EP之间的中间位置,则必须稍微向上或向下变化。 作为第一步,您需要知道CP是否更接近SP或EP: 设distanceSP为CP与SP之间的距离 和distanceEP CP和EP之间的距离 然后我将比率定义为:
ratio = (distanceSP - distanceEP) / (distanceSP + distanceEP);
现在我们将使用它来改变t:
ratio = 0.5 - (1/3) * ratio;
注意:这仍然是近似值,尝试和错误选择1/3。
这是我的Java函数: (Point2D是一类JavaFX)
private Point2D adjustControlPoint(Point2D start, Point2D end, Point2D visualControlPoint) {
// CP = ControlPoint, SP = StartPoint, EP = EndPoint, BP(t) = variable Point on BeziérCurve where t is between 0 and 1
// BP(t) = SP*t^2 + CP*2*t*(1-t) + EP*(1-t)^2
// CP = (BP(t) - SP*t^2 - EP*(1-t)^2) / ( 2*t*(1-t) )
// but we are missing t the goal is to approximate t
double distanceStart = visualControlPoint.distance(start);
double distanceEnd = visualControlPoint.distance(end);
double ratio = (distanceStart - distanceEnd) / (distanceStart + distanceEnd);
// now approximate ratio to be t
ratio = 0.5 - (1.0 / 3) * ratio;
double ratioInv = 1 - ratio;
Point2D term2 = start.multiply( ratio * ratio );
Point2D term3 = end.multiply( ratioInv * ratioInv );
double term4 = 2 * ratio * ratioInv;
return visualControlPoint.subtract(term2).subtract(term3).multiply( 1 / term4);
}
我希望这会有所帮助。
答案 2 :(得分:3)
让我们想要的四边形贝塞尔曲线为 P(t) = P1t^2 + PC2t(1-t) + P2*(1- t)^2 还有那个四贝塞尔传球P1,Pt,P2
通过三个点 P1、Pt、P3 的最佳四边形贝塞尔曲线具有控制点 PC,其张力指向曲线切线的垂线。那一点也是那个贝塞尔曲线的平分线。在通过 throw PC 和 Pt 的矩形线上以 PC 开始 P1 和结束 P3 的任何贝塞尔曲线都会以相同的参数 t 值切割四边形贝塞尔曲线。
PC 点未通过贝塞尔曲线的参数位置 t=.5 实现。一般来说,对于任何 P1、Pt、P2,我们都得到了一个 Pc,如下一个公式所述。
得到的 PC 也是那个贝塞尔曲线到 Pt 的近点,通过 Pt 和 Pc 的直线是三角形 P1, Pt, Pc 的平分线。
这是描述定理和公式的论文 - 位于我的网站 https://microbians.com/math/Gabriel_Suchowolski_Quadratic_bezier_through_three_points_and_the_-equivalent_quadratic_bezier_(theorem)-.pdf
还有代码
(function() {
var canvas, ctx, point, style, drag = null, dPoint;
// define initial points
function Init() {
point = {
p1: { x:200, y:350 },
p2: { x:600, y:350 }
};
point.cp1 = { x: 500, y: 200 };
// default styles
style = {
curve: { width: 2, color: "#333" },
cpline: { width: 1, color: "#C00" },
curve1: { width: 1, color: "#2f94e2" },
curve2: { width: 1, color: "#2f94e2" },
point: { radius: 10, width: 2, color: "#2f94e2", fill: "rgba(200,200,200,0.5)", arc1: 0, arc2: 2 * Math.PI }
}
// line style defaults
ctx.lineCap = "round";
ctx.lineJoin = "round";
// event handlers
canvas.onmousedown = DragStart;
canvas.onmousemove = Dragging;
canvas.onmouseup = canvas.onmouseout = DragEnd;
DrawCanvas();
}
// draw canvas
function DrawCanvas() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
// control lines
ctx.lineWidth = style.cpline.width;
ctx.strokeStyle = style.cpline.color;
ctx.beginPath();
ctx.moveTo(point.p1.x, point.p1.y);
ctx.lineTo(point.cp1.x, point.cp1.y);
ctx.lineTo(point.p2.x, point.p2.y);
ctx.stroke();
// curve
ctx.lineWidth = style.curve.width;
ctx.strokeStyle = style.curve.color;
ctx.beginPath();
ctx.moveTo(point.p1.x, point.p1.y);
through = !document.getElementById("cbThrough").checked;
if(through)
{
tmpx1 = point.p1.x-point.cp1.x;
tmpx2 = point.p2.x-point.cp1.x;
tmpy1 = point.p1.y-point.cp1.y;
tmpy2 = point.p2.y-point.cp1.y;
dist1 = Math.sqrt(tmpx1*tmpx1+tmpy1*tmpy1);
dist2 = Math.sqrt(tmpx2*tmpx2+tmpy2*tmpy2);
tmpx = point.cp1.x-Math.sqrt(dist1*dist2)*(tmpx1/dist1+tmpx2/dist2)/2;
tmpy = point.cp1.y-Math.sqrt(dist1*dist2)*(tmpy1/dist1+tmpy2/dist2)/2;
ctx.quadraticCurveTo(tmpx, tmpy, point.p2.x, point.p2.y);
}
else
{
ctx.quadraticCurveTo(point.cp1.x, point.cp1.y, point.p2.x, point.p2.y);
}
ctx.stroke();
//new, t range is [0, 1]
ctx.beginPath();
ctx.lineWidth = style.curve1.width;
ctx.strokeStyle = style.curve1.color;
ctx.moveTo(point.p1.x, point.p1.y);
// control points
for (var p in point) {
ctx.lineWidth = style.point.width;
ctx.strokeStyle = style.point.color;
ctx.fillStyle = style.point.fill;
ctx.beginPath();
ctx.arc(point[p].x, point[p].y, style.point.radius, style.point.arc1, style.point.arc2, true);
ctx.fill();
ctx.stroke();
}
}
// start dragging
function DragStart(e) {
e = MousePos(e);
var dx, dy;
for (var p in point) {
dx = point[p].x - e.x;
dy = point[p].y - e.y;
if ((dx * dx) + (dy * dy) < style.point.radius * style.point.radius) {
drag = p;
dPoint = e;
canvas.style.cursor = "move";
return;
}
}
}
// dragging
function Dragging(e) {
if (drag) {
e = MousePos(e);
point[drag].x += e.x - dPoint.x;
point[drag].y += e.y - dPoint.y;
dPoint = e;
DrawCanvas();
}
}
// end dragging
function DragEnd(e) {
drag = null;
canvas.style.cursor = "default";
DrawCanvas();
}
// event parser
function MousePos(event) {
event = (event ? event : window.event);
return {
x: event.pageX - canvas.offsetLeft,
y: event.pageY - canvas.offsetTop
}
}
// start
canvas = document.getElementById("canvas");
if (canvas.getContext) {
ctx = canvas.getContext("2d");
Init();
}
})();
html, body { background-color: #DDD;font-family: sans-serif; height: 100%; margin:0;
padding:10px;
}
canvas { display:block;}
#btnControl { font-size:1em; position: absolute; top: 10px; left: 10px; }
#btnSplit { font-size:1em; position: absolute; top: 35px; left: 10px; }
#text { position: absolute; top: 75px; left: 10px; }
a {
text-decoration: none;
font-weight:700;
color: #2f94e2;
}
#little { font-size:.7em; color:#a0a0a0; position: absolute; top: 775px; left: 10px; }
<h1>Quadratic bezier throw 3 points</h1>
<div>
Also take a look the the math paper <a target="_blank" href="https://microbians.com/mathcode">Quadratic bezier through three points! →</a> <br/><br/>
Gabriel Suchowolski (<a href="https://microbians.com" target="_blank">microbians</a>), December, 2012
</div>
<div id="little">Thanks to 艾蔓草 xhhjin for the code (that I fork) implementing my math paper.</div>
<br/>
</div>
<input type="checkbox" id="cbThrough" name="through"/>Primitive quadratic Bezier (as control points)</input><br/><br/>
<canvas id="canvas" height="500" width="800" class="through" style="cursor: default; background-color: #FFF;"></canvas>
享受
答案 3 :(得分:1)
如果你不想要确切的中间点,而你想要t(0到1)的任何值,那么等式是:
controlX = pointToPassThroughX/t - startX*t - endX*t;
controlY = pointToPassThroughY/t - startY*t - endY*t;
当然,这也适用于中点,只需将t设为0.5即可。简单! : - )