如何绘制通过三个点的曲线?

时间:2009-07-06 23:47:37

标签: java java-2d

我正在尝试创建一条曲线,该曲线通过Java中的三个给定点(我通过扩展JPanel的类绘制曲线)。我该怎么做?

enter image description here

5 个答案:

答案 0 :(得分:5)

你应该研究类似Catmull-Rom样条的东西,它们基本上是通过许多控制点的曲线(在你的情况下是你的三个点)。

以下是我在快速谷歌后发现的一个例子:http://www.mvps.org/directx/articles/catmull/

希望这会有所帮助:)

答案 1 :(得分:5)

圆圈将通过飞机上的三个点。这个页面解释了几何: http://www.mathopenref.com/const3pointcircle.html

答案 2 :(得分:4)

我只是花了一些时间才能以健壮的方式工作。有一些支持函数,后面是用圆圈中的三个点创建Arc2D的东西。为了我的目的,我有一个起点和终点,以及一个中间的“中间”点(虽然它实际上不必在中间---它的目的是告诉我我想要的圆弧)。

以下是指向来源的直接链接:

org.six11.util.gui.shape.ShapeFactory

org.six11.util.pen.Functions

public static Pt getCircleCenter(Pt a, Pt b, Pt c) {
  double ax = a.getX();
  double ay = a.getY();
  double bx = b.getX();
  double by = b.getY();
  double cx = c.getX();
  double cy = c.getY();

  double A = bx - ax;
  double B = by - ay;
  double C = cx - ax;
  double D = cy - ay;

  double E = A * (ax + bx) + B * (ay + by);
  double F = C * (ax + cx) + D * (ay + cy);

  double G = 2 * (A * (cy - by) - B * (cx - bx));
  if (G == 0.0)
    return null; // a, b, c must be collinear

  double px = (D * E - B * F) / G;
  double py = (A * F - C * E) / G;
  return new Pt(px, py);
}

public static double makeAnglePositive(double angleDegrees) {
  double ret = angleDegrees;
  if (angleDegrees < 0) {
    ret = 360 + angleDegrees;
  }
  return ret;
}

public static double getNearestAnglePhase(double limitDegrees, double sourceDegrees, int dir) {
  double value = sourceDegrees;
  if (dir > 0) {
    while (value < limitDegrees) {
      value += 360.0;
    }
  } else if (dir < 0) {
    while (value > limitDegrees) {
      value -= 360.0;
    }
  }
  return value;
}

public static Arc2D makeArc(Pt s, Pt mid, Pt e) {
  Pt c = Functions.getCircleCenter(s, mid, e);
  double radius = c.distance(s);

  double startAngle = Functions.makeAnglePositive(Math.toDegrees(-Math
      .atan2(s.y - c.y, s.x - c.x)));
  double midAngle = Functions.makeAnglePositive(Math.toDegrees(-Math.atan2(mid.y - c.y, mid.x
      - c.x)));
  double endAngle = Functions
      .makeAnglePositive(Math.toDegrees(-Math.atan2(e.y - c.y, e.x - c.x)));

  // Now compute the phase-adjusted angles begining from startAngle, moving positive and negative.
  double midDecreasing = Functions.getNearestAnglePhase(startAngle, midAngle, -1);
  double midIncreasing = Functions.getNearestAnglePhase(startAngle, midAngle, 1);
  double endDecreasing = Functions.getNearestAnglePhase(midDecreasing, endAngle, -1);
  double endIncreasing = Functions.getNearestAnglePhase(midIncreasing, endAngle, 1);

  // Each path from start -> mid -> end is technically, but one will wrap around the entire
  // circle, which isn't what we want. Pick the one that with the smaller angular change.
  double extent = 0;
  if (Math.abs(endDecreasing - startAngle) < Math.abs(endIncreasing - startAngle)) {
    extent = endDecreasing - startAngle;
  } else {
    extent = endIncreasing - startAngle;
  }

  return new Arc2D.Double(c.x - radius, c.y - radius, radius * 2, radius * 2, startAngle, extent,
      Arc2D.OPEN);
}

答案 3 :(得分:2)

尝试在bezier样条上进行谷歌搜索。这可能是2D解决方案,但如果需要,可以扩展为3D。

基本上,使用三个点作为参数,你可以得到一个适合三个点的二阶多项式。并且它是可扩展的,如果你有N个点,你得到一个N-1阶多项式,参数化地生成所有的点。从第一个到最后一个,当你'调整'一个标量参数时,经常表示为's'。

修改/添加的:

正如所指出的那样(信用CapBBeard!),Beziers实际上并没有达到中间点。拉格朗日插值确实实际上达到了积分,但随着点数的增加,它变得更加丑陋。 (类似O(n)多项式分数,每个阶数为N)

答案 4 :(得分:0)

使用2条曲线
curveLine1创建3点:P1,C1,E1 用3个点创建的curveLine2:P2 = E1,C2,E2 将C1,E1,C2分成1行 在此处查看示例:http://i.stack.imgur.com/I901q.png

QuadCurve2D.Double curveLine1 = new QuadCurve2D.Double(30, 75, 195, 23, 280, 143);
//QuadCurve2D.Double curveLine1 = new QuadCurve2D.Double(P1.x, P1.y, C1.x, C1.y, E1.x, E1.y);
QuadCurve2D.Double curveLine2 = new QuadCurve2D.Double(280, 143, 366, 260, 466, 193);
//QuadCurve2D.Double curveLine2 = new QuadCurve2D.Double(E1.x, E1.y, C2.x, C2.y, E2.x, E2.y);
Graphics2D g2 = (Graphics2D) g;
g2.draw(curveLine1);
g2.draw(curveLine2);