元素值先减小然后增加的序列称为V-序列。在有效的V序列中,增量臂中应至少有一个元素和至少一个元素。
例如,“5 3 1 9 17 23”是有效的V序列,其在减少臂中具有两个元素,即5和3,并且增加臂中的3个元素即9,17和23。但序列“6 4 2”或“8 10 15”中没有一个是V序列,因为“6 4 2”在增加部分中没有元素,而“8 10 15”在减少部分没有元素。鉴于N个序列的序列找到其最长(不一定是连续的)子序列,即V序列?
是否可以在O(n)/ O(logn)/ O(n ^ 2)中执行此操作?
答案 0 :(得分:4)
该解决方案与最长非递减子序列的解决方案非常相似。不同之处在于,现在对于每个元素,您需要存储两个值 - 从该元素开始的最长V序列的长度是什么,以及从此开始的最长减少子序列的长度是多少。请看一下typical non-decreasing subsequence解决方案的解决方案,我相信这应该是一个足够好的提示。我相信你可以达到的最佳复杂度是O(n * log(n)),但复杂度O(n ^ 2)的解决方案更容易实现。
希望这有帮助。
答案 1 :(得分:0)
以下是基于izomorphius的Python实现,非常有用的提示。这建立在不断增加的子序列问题的this implementation之上。正如izomorphius所说,它的工作原理是跟踪“到目前为止发现的最佳V”,以及“迄今为止发现的最佳增长序列”。注意,一旦识别出V,扩展V与扩展递减序列没有什么不同。此外,还必须有一个规则,即从先前发现的增加的子序列中“生成”新的候选V.
from bisect import bisect_left
def Vsequence(seq):
"""Returns the longest (non-contiguous) subsequence of seq that
first increases, then decreases (i.e. a "V sequence").
"""
# head[j] = index in 'seq' of the final member of the best increasing
# subsequence of length 'j + 1' yet found
head = [0]
# head_v[j] = index in 'seq' of the final member of the best
# V-subsequence yet found
head_v = []
# predecessor[j] = linked list of indices of best increasing subsequence
# ending at seq[j], in reverse order
predecessor = [-1] * len(seq)
# similarly, for the best V-subsequence
predecessor_v = [-1] * len(seq)
for i in xrange(1, len(seq)):
## First: extend existing V's via decreasing sequence algorithm.
## Note heads of candidate V's are stored in head_v and that
## seq[head_v[]] is a non-increasing sequence
j = -1 ## "length of best new V formed by modification, -1"
if len(head_v) > 0:
j = bisect_left([-seq[head_v[idx]] for idx in xrange(len(head_v))], -seq[i])
if j == len(head_v):
head_v.append(i)
if seq[i] > seq[head_v[j]]:
head_v[j] = i
## Second: detect "new V's" if the next point is lower than the head of the
## current best increasing sequence.
k = -1 ## "length of best new V formed by spawning, -1"
if len(head) > 1 and seq[i] < seq[head[-1]]:
k = len(head)
extend_with(head_v, i, k + 1)
for idx in range(k,-1,-1):
if seq[head_v[idx]] > seq[i]: break
head_v[idx] = i
## trace new predecessor path, if found
if k > j:
## It's better to build from an increasing sequence
predecessor_v[i] = head[-1]
trace_idx = predecessor_v[i]
while trace_idx > -1:
predecessor_v[trace_idx] = predecessor[trace_idx]
trace_idx=predecessor_v[trace_idx]
elif j > 0:
## It's better to extend an existing V
predecessor_v[i] = head_v[j - 1]
## Find j such that: seq[head[j - 1]] < seq[i] <= seq[head[j]]
## seq[head[j]] is increasing, so use binary search.
j = bisect_left([seq[head[idx]] for idx in xrange(len(head))], seq[i])
if j == len(head):
head.append(i) ## no way to turn any increasing seq into a V!
if seq[i] < seq[head[j]]:
head[j] = i
if j > 0: predecessor[i] = head[j - 1]
## trace subsequence back to output
result = []
trace_idx = head_v[-1]
while (trace_idx >= 0):
result.append(seq[trace_idx])
trace_idx = predecessor_v[trace_idx]
return result[::-1]
一些示例输出:
>>> l1
[26, 92, 36, 61, 91, 93, 98, 58, 75, 48, 8, 10, 58, 7, 95]
>>> Vsequence(l1)
[26, 36, 61, 91, 93, 98, 75, 48, 10, 7]
>>>
>>> l2
[20, 66, 53, 4, 52, 30, 21, 67, 16, 48, 99, 90, 30, 85, 34, 60, 15, 30, 61, 4]
>>> Vsequence(l2)
[4, 16, 48, 99, 90, 85, 60, 30, 4]