从嵌套列表创建数组时,在Numpy中抑制科学记数法

时间:2012-03-19 20:54:15

标签: python numpy

我有一个嵌套的Python列表,如下所示:

my_list = [[3.74, 5162, 13683628846.64, 12783387559.86, 1.81],
 [9.55, 116, 189688622.37, 260332262.0, 1.97],
 [2.2, 768, 6004865.13, 5759960.98, 1.21],
 [3.74, 4062, 3263822121.39, 3066869087.9, 1.93],
 [1.91, 474, 44555062.72, 44555062.72, 0.41],
 [5.8, 5006, 8254968918.1, 7446788272.74, 3.25],
 [4.5, 7887, 30078971595.46, 27814989471.31, 2.18],
 [7.03, 116, 66252511.46, 81109291.0, 1.56],
 [6.52, 116, 47674230.76, 57686991.0, 1.43],
 [1.85, 623, 3002631.96, 2899484.08, 0.64],
 [13.76, 1227, 1737874137.5, 1446511574.32, 4.32],
 [13.76, 1227, 1737874137.5, 1446511574.32, 4.32]]

然后我导入Numpy,并将打印选项设置为(suppress=True)。当我创建一个数组时:

my_array = numpy.array(my_list)

我不能为我的生活压制科学记谱法:

[[  3.74000000e+00   5.16200000e+03   1.36836288e+10   1.27833876e+10
    1.81000000e+00]
 [  9.55000000e+00   1.16000000e+02   1.89688622e+08   2.60332262e+08
    1.97000000e+00]
 [  2.20000000e+00   7.68000000e+02   6.00486513e+06   5.75996098e+06
    1.21000000e+00]
 [  3.74000000e+00   4.06200000e+03   3.26382212e+09   3.06686909e+09
    1.93000000e+00]
 [  1.91000000e+00   4.74000000e+02   4.45550627e+07   4.45550627e+07
    4.10000000e-01]
 [  5.80000000e+00   5.00600000e+03   8.25496892e+09   7.44678827e+09
    3.25000000e+00]
 [  4.50000000e+00   7.88700000e+03   3.00789716e+10   2.78149895e+10
    2.18000000e+00]
 [  7.03000000e+00   1.16000000e+02   6.62525115e+07   8.11092910e+07
    1.56000000e+00]
 [  6.52000000e+00   1.16000000e+02   4.76742308e+07   5.76869910e+07
    1.43000000e+00]
 [  1.85000000e+00   6.23000000e+02   3.00263196e+06   2.89948408e+06
    6.40000000e-01]
 [  1.37600000e+01   1.22700000e+03   1.73787414e+09   1.44651157e+09
    4.32000000e+00]
 [  1.37600000e+01   1.22700000e+03   1.73787414e+09   1.44651157e+09
    4.32000000e+00]]

如果我直接创建一个简单的numpy数组:

new_array = numpy.array([1.5, 4.65, 7.845])

我没有问题,打印如下:

[ 1.5    4.65   7.845]

有谁知道我的问题是什么?

5 个答案:

答案 0 :(得分:203)

我猜您需要的是np.set_printoptions(suppress=True),有关详细信息,请参阅此处: http://pythonquirks.blogspot.fr/2009/10/controlling-printing-in-numpy.html

对于SciPy.org numpy文档,其中包含所有函数参数(上面链接中未详细说明抑制),请参见此处:https://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html

答案 1 :(得分:21)

Python Force - 在打印numpy ndarrays,争论文本对齐,舍入和打印选项时禁止所有指数表示法:

以下是对正在进行的操作的解释,滚动到底部进行代码演示。

将参数suppress=True传递给函数set_printoptions仅适用于符合分配给它的默认8个字符空间的数字,如下所示:

import numpy as np
np.set_printoptions(suppress=True) #prevent numpy exponential 
                                   #notation on print, default False

#            tiny     med  large
a = np.array([1.01e-5, 22, 1.2345678e7])  #notice how index 2 is 8 
                                          #digits wide

print(a)    #prints [ 0.0000101   22.     12345678. ]

但是,如果传入的宽度超过8个字符,则会再次施加指数表示法,如下所示:

np.set_printoptions(suppress=True)

a = np.array([1.01e-5, 22, 1.2345678e10])    #notice how index 2 is 10
                                             #digits wide, too wide!

#exponential notation where we've told it not to!
print(a)    #prints [1.01000000e-005   2.20000000e+001   1.23456780e+10]
numpy可以选择将你的数字减半,从而歪曲它,或者强制指数表示法,它会选择后者。

这里有set_printoptions(formatter=...)来指定打印和舍入的选项。告诉set_printoptions只打印裸露的浮动:

np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:f}'.format})

a = np.array([1.01e-5, 22, 1.2345678e30])  #notice how index 2 is 30
                                           #digits wide.  

#Ok good, no exponential notation in the large numbers:
print(a)  #prints [0.000010 22.000000 1234567799999999979944197226496.000000] 

我们强制抑制了指数表示法,但它没有舍入或对齐,因此请指定额外的格式选项:

np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:0.2f}'.format})  #float, 2 units 
                                               #precision right, 0 on left

a = np.array([1.01e-5, 22, 1.2345678e30])   #notice how index 2 is 30
                                            #digits wide

print(a)  #prints [0.00 22.00 1234567799999999979944197226496.00]

强制抑制ndarray中所有指数概念的一个缺点是,如果你的ndarray在无限远处得到一个巨大的浮动值,并且你打印出来,你就会在页面满了的时候被炸成碎片数字。

完整示例演示1:

from pprint import pprint
import numpy as np
#chaotic python list of lists with very different numeric magnitudes
my_list = [[3.74, 5162, 13683628846.64, 12783387559.86, 1.81],
           [9.55, 116, 189688622.37, 260332262.0, 1.97],
           [2.2, 768, 6004865.13, 5759960.98, 1.21],
           [3.74, 4062, 3263822121.39, 3066869087.9, 1.93],
           [1.91, 474, 44555062.72, 44555062.72, 0.41],
           [5.8, 5006, 8254968918.1, 7446788272.74, 3.25],
           [4.5, 7887, 30078971595.46, 27814989471.31, 2.18],
           [7.03, 116, 66252511.46, 81109291.0, 1.56],
           [6.52, 116, 47674230.76, 57686991.0, 1.43],
           [1.85, 623, 3002631.96, 2899484.08, 0.64],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32]]

#convert python list of lists to numpy ndarray called my_array
my_array = np.array(my_list)

#This is a little recursive helper function converts all nested 
#ndarrays to python list of lists so that pretty printer knows what to do.
def arrayToList(arr):
    if type(arr) == type(np.array):
        #If the passed type is an ndarray then convert it to a list and
        #recursively convert all nested types
        return arrayToList(arr.tolist())
    else:
        #if item isn't an ndarray leave it as is.
        return arr

#suppress exponential notation, define an appropriate float formatter
#specify stdout line width and let pretty print do the work
np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:16.3f}'.format}, linewidth=130)
pprint(arrayToList(my_array))

打印:

array([[           3.740,         5162.000,  13683628846.640,  12783387559.860,            1.810],
       [           9.550,          116.000,    189688622.370,    260332262.000,            1.970],
       [           2.200,          768.000,      6004865.130,      5759960.980,            1.210],
       [           3.740,         4062.000,   3263822121.390,   3066869087.900,            1.930],
       [           1.910,          474.000,     44555062.720,     44555062.720,            0.410],
       [           5.800,         5006.000,   8254968918.100,   7446788272.740,            3.250],
       [           4.500,         7887.000,  30078971595.460,  27814989471.310,            2.180],
       [           7.030,          116.000,     66252511.460,     81109291.000,            1.560],
       [           6.520,          116.000,     47674230.760,     57686991.000,            1.430],
       [           1.850,          623.000,      3002631.960,      2899484.080,            0.640],
       [          13.760,         1227.000,   1737874137.500,   1446511574.320,            4.320],
       [          13.760,         1227.000,   1737874137.500,   1446511574.320,            4.320]])

完整示例演示2:

import numpy as np
#chaotic python list of lists with very different numeric magnitudes
my_list = [[3.74, 5162, 13683628846.64, 12783387559.86, 1.81],
           [9.55, 116, 189688622.37, 260332262.0, 1.97],
           [2.2, 768, 6004865.13, 5759960.98, 1.21],
           [3.74, 4062, 3263822121.39, 3066869087.9, 1.93],
           [1.91, 474, 44555062.72, 44555062.72, 0.41],
           [5.8, 5006, 8254968918.1, 7446788272.74, 3.25],
           [4.5, 7887, 30078971595.46, 27814989471.31, 2.18],
           [7.03, 116, 66252511.46, 81109291.0, 1.56],
           [6.52, 116, 47674230.76, 57686991.0, 1.43],
           [1.85, 623, 3002631.96, 2899484.08, 0.64],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32]]
import sys 
#convert python list of lists to numpy ndarray called my_array
my_array = np.array(my_list)
#following two lines do the same thing, showing that np.savetxt can
#correctly handle python lists of lists and numpy 2D ndarrays.
np.savetxt(sys.stdout, my_list, '%16.2f')
np.savetxt(sys.stdout, my_array, '%16.2f')   

打印:

    3.74          5162.00   13683628846.64   12783387559.86             1.81
    9.55           116.00     189688622.37     260332262.00             1.97
    2.20           768.00       6004865.13       5759960.98             1.21
    3.74          4062.00    3263822121.39    3066869087.90             1.93
    1.91           474.00      44555062.72      44555062.72             0.41
    5.80          5006.00    8254968918.10    7446788272.74             3.25
    4.50          7887.00   30078971595.46   27814989471.31             2.18
    7.03           116.00      66252511.46      81109291.00             1.56
    6.52           116.00      47674230.76      57686991.00             1.43
    1.85           623.00       3002631.96       2899484.08             0.64
   13.76          1227.00    1737874137.50    1446511574.32             4.32
   13.76          1227.00    1737874137.50    1446511574.32             4.32

答案 2 :(得分:20)

对于1D和2D数组,您可以使用np.savetxt使用特定格式字符串进行打印:

>>> import sys
>>> x = numpy.arange(20).reshape((4,5))
>>> numpy.savetxt(sys.stdout, x, '%5.2f')
 0.00  1.00  2.00  3.00  4.00
 5.00  6.00  7.00  8.00  9.00
10.00 11.00 12.00 13.00 14.00
15.00 16.00 17.00 18.00 19.00

你在v1.3中使用numpy.set_printoptions或numpy.array2string的选项非常笨重且有限(例如无法抑制大数字的科学记数法)。使用numpy.set_printoptions(formatter = ..)和numpy.array2string(style = ..),看起来这将随着未来版本而改变。

答案 3 :(得分:0)

您可以编写一个将科学记数法转换为常规的函数,例如

def sc2std(x):
    s = str(x)
    if 'e' in s:
        num,ex = s.split('e')
        if '-' in num:
            negprefix = '-'
        else:
            negprefix = ''
        num = num.replace('-','')
        if '.' in num:
            dotlocation = num.index('.')
        else:
            dotlocation = len(num)
        newdotlocation = dotlocation + int(ex)
        num = num.replace('.','')
        if (newdotlocation < 1):
            return negprefix+'0.'+'0'*(-newdotlocation)+num
        if (newdotlocation > len(num)):
            return negprefix+ num + '0'*(newdotlocation - len(num))+'.0'
        return negprefix + num[:newdotlocation] + '.' + num[newdotlocation:]
    else:
        return s

答案 4 :(得分:-1)

添加一个“”“即可完成打印:

print(myarray ,"")

将抑制科学计数法。