如何编写一个程序来查找给定数字后的n个素数? 例如100之后的前10个素数,或1000之后的前25个素数。 编辑: 以下是我试过的。我正在以这种方式获得输出,但是我们可以在不使用任何素性测试函数的情况下进行输出吗?
#include<stdio.h>
#include<conio.h>
int isprime(int);
main()
{
int count=0,i;
for(i=100;1<2;i++)
{
if(isprime(i))
{
printf("%d\n",i);
count++;
if(count==5)
break;
}
}
getch();
}
int isprime(int i)
{
int c=0,n;
for(n=1;n<=i/2;n++)
{
if(i%n==0)
c++;
}
if(c==1)
return 1;
else
return 0;
}
答案 0 :(得分:6)
不确定。阅读Sieve of Eratosthenes。您可以生成素数,而不是检查素数。
答案 1 :(得分:5)
实施Eratosthenes的&#34;偏移&#34; 筛子。它只是两个循环,一个接一个,在另一个循环中。
#include <math.h> // http://ideone.com/38MQlI
#include <stdlib.h>
#include <stdio.h>
typedef unsigned char bool; // quick'n'dirty
void primes (int n, int above)
{
double n0 = above / ( log(above) - log(log(above)) ); // ~ 11%..16% overhead
int i=0, j=0, k=0;
double top = n*log(above)*log(log(above)) + above; // approximated
int lim = sqrt(top), s2 = top - above + 1;
bool *core = (bool*) calloc( lim+1, sizeof(bool)); // all
bool *offset = (bool*) calloc( s2+1, sizeof(bool)); // zeroes
for( i=4; i<=lim; i+=2 ) core[i]=1; // `1` marks composites
for( i=above%2; i<=s2; i+=2 ) offset[i]=1; // (even numbers)
for( i=3; i<=lim; i+=2 )
if( !core[i] ) // `0` marks primes
{
k = 2*i;
for( j=i*i; j<=lim; j+=k )
core[j] = 1;
for( j=(k-(above-i)%k)%k; j<=s2; j+=k ) // hopscotch to the top
offset[j] = 1;
}
printf(" %d +: ",above);
for( i=0; i<=s2 && n>0 ; ++i )
if( !offset[i] ) // not a composite,
{
printf(" %d", i); // thus, a prime
--n;
}
}
int main()
{
// primes(10,1000); // 1000 +: 9 13 19 21 31 33 39 49 51 61
// primes(10,100000); // 100000 +: 3 19 43 49 57 69 103 109 129 151
primes(10,100000000); // 100000000 +: 7 37 39 49 73 81 123 127 193 213
// 1000000000 +: 7 9 21 33 87 93 97 103 123 181
return 0;
}
您可以在此处添加许多改进。例如,不要标记平均值,而是完全不代表它们。
答案 2 :(得分:3)
#include <stdio.h>
static int primes[] = {
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,
101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,
211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,
307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,
401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,
503,509,521,523,541,547,557,563,569,571,577,587,593,599,
601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,
701,709,719,727,733,739,743,751,757,761,769,773,787,797,
809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,
907,911,919,929,937,941,947,953,967,971,977,983,991,997,
1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,
1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,
1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,
1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,
1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499
};
int primeN = sizeof(primes)/sizeof(int);
void printPrime(int n, int count){
int i;
for(i=0;primes[i]<n;i++);
while(count){
printf("%d\n", primes[i++]);
count--;
}
}
int main(){
printf("first 10 primes after 100\n");
printPrime(100, 10);
printf("first 25 primes after 1000\n");
printPrime(1000, 25);
getch();
}
答案 3 :(得分:-1)
例如,你想在100之后找到10个素数。一种方式(不是有效的)是我们知道5个数字是偶数且不是素数所以对于其他5个数字检查它们的mod是否为(3,5, 7,9)如果不是全部都是0,那么它是素数。