Matlab interp1函数的C实现(线性插值)

时间:2012-02-22 12:35:55

标签: c matlab interpolation linear

你知道Matlab interp1函数的任何C实现(只是'线性'函数)吗?我知道一个Java

9 个答案:

答案 0 :(得分:12)

我已将Luis的代码移植到c ++中。它似乎工作但我没有检查过很多,所以要注意并重新检查你的结果。

#include <vector>
#include <cfloat>
#include <math.h>

vector< float > interp1( vector< float > &x, vector< float > &y, vector< float > &x_new )
{
    vector< float > y_new;
    y_new.reserve( x_new.size() );

    std::vector< float > dx, dy, slope, intercept;
    dx.reserve( x.size() );
    dy.reserve( x.size() );
    slope.reserve( x.size() );
    intercept.reserve( x.size() );
    for( int i = 0; i < x.size(); ++i ){
        if( i < x.size()-1 )
        {
            dx.push_back( x[i+1] - x[i] );
            dy.push_back( y[i+1] - y[i] );
            slope.push_back( dy[i] / dx[i] );
            intercept.push_back( y[i] - x[i] * slope[i] );
        }
        else
        {
            dx.push_back( dx[i-1] );
            dy.push_back( dy[i-1] );
            slope.push_back( slope[i-1] );
            intercept.push_back( intercept[i-1] );
        }
    }

    for ( int i = 0; i < x_new.size(); ++i ) 
    {
        int idx = findNearestNeighbourIndex( x_new[i], x );
        y_new.push_back( slope[idx] * x_new[i] + intercept[idx] );

    }

}

int findNearestNeighbourIndex( float value, vector< float > &x )
{
    float dist = FLT_MAX;
    int idx = -1;
    for ( int i = 0; i < x.size(); ++i ) {
        float newDist = value - x[i];
        if ( newDist > 0 && newDist < dist ) {
            dist = newDist;
            idx = i;
        }
    }

    return idx;
}

答案 1 :(得分:8)

我自己实现了这种线性插值(其中一些是用西班牙语写的,对不起)。名为 encuentraValorMasProximo 的函数只是在数组(xD)中找到最近的值(elementoMasProximo)和索引(indiceEnVector)到另一个值(xx [i])。

void interp1(int *x, int x_tam, double *y, int *xx, int xx_tam, double *yy)
{
double *dx, *dy, *slope, *intercept, *elementoMasProximo, *xD;
int i, *indiceEnVector;

dx=(double *)calloc(x_tam-1,sizeof(double));
dy=(double *)calloc(x_tam-1,sizeof(double));
slope=(double *)calloc(x_tam-1,sizeof(double));
intercept=(double *)calloc(x_tam-1,sizeof(double));
indiceEnVector=(int *) malloc(sizeof(int));
elementoMasProximo=(double *) malloc(sizeof(double));
xD=(double *)calloc(x_tam,sizeof(double));

for(i=0;i<x_tam;i++){
    xD[i]=x[i];
}

for(i = 0; i < x_tam; i++){
    if(i<x_tam-1){
        dx[i] = x[i + 1] - x[i];
        dy[i] = y[i + 1] - y[i];
        slope[i] = dy[i] / dx[i];
        intercept[i] = y[i] - x[i] * slope[i];
    }else{
        dx[i]=dx[i-1];
        dy[i]=dy[i-1];
        slope[i]=slope[i-1];
        intercept[i]=intercept[i-1];
    }
}

for (i = 0; i < xx_tam; i++) {
    encuentraValorMasProximo(xx[i], xD, x_tam, x_tam, elementoMasProximo, indiceEnVector);
    yy[i]=slope[*indiceEnVector] * xx[i] + intercept[*indiceEnVector];
}
}

测试功能可能是:

void main(){

int x_tam, xx_tam, i;
double *yy;
int x[]={3,6,9};
double y[]={6,12,18};
int xx[]={1,2,3,4,5,6,7,8,9,10};
x_tam=3;
xx_tam=10;
yy=(double *) calloc(xx_tam,sizeof(double));

interp1(x, x_tam, y, xx, xx_tam, yy);

for(i=0;i<xx_tam;i++){
    printf("%d\t%f\n",xx[i],yy[i]);
}

}

结果

1 2.000000

2 4.000000

3 6.000000

4 8.000000

5 10.000000

6 12.000000

7 14.000000

8 16.000000

9 18.000000

10 20.000000

答案 2 :(得分:6)

常用函数的优秀实现可以在书籍Numerical Recipes in C中找到,可以在线免费查看。第3.1.2章有一个线性插值配方,本章的其余部分涵盖了更高级的配方。

我强烈推荐这本书,它编写得很好,涵盖了大量的算法,这些算法也以非常有效且仍然可以理解的方式实现。

答案 3 :(得分:5)

路易斯提交的C-Code存在问题。首先,encuentraValorMasProximo丢失了。其次,阵列预留是一个数字短。我也清理了这个功能。下面是带有encuentraValorMasProximo函数的功能性C代码(重命名为findNearestNeighbourIndex)。

#include <float.h> 

int findNearestNeighbourIndex( double value, double *x, int len )
{
    double dist;
    int idx;
    int i;

    idx = -1;
    dist = DBL_MAX;
    for ( i = 0; i < len; i++ ) {
        double newDist = value - x[i];
        if ( newDist > 0 && newDist < dist ) {
            dist = newDist;
            idx = i;
        }
    }

    return idx;
}

void interp1(double *x, int x_tam, double *y, double *xx, int xx_tam, double *yy)
{
    double dx, dy, *slope, *intercept;
    int i, indiceEnVector;

    slope=(double *)calloc(x_tam,sizeof(double));
    intercept=(double *)calloc(x_tam,sizeof(double));

    for(i = 0; i < x_tam; i++){
        if(i<x_tam-1){
            dx = x[i + 1] - x[i];
            dy = y[i + 1] - y[i];
            slope[i] = dy / dx;
            intercept[i] = y[i] - x[i] * slope[i];
        }else{
            slope[i]=slope[i-1];
            intercept[i]=intercept[i-1];
        }
    }

    for (i = 0; i < xx_tam; i++) {
        indiceEnVector = findNearestNeighbourIndex( xx[i], x, x_tam);
        if (indiceEnVector != -1)
            yy[i]=slope[indiceEnVector] * xx[i] + intercept[indiceEnVector];
        else
            yy[i]=DBL_MAX;
    }
    free(slope);
    free(intercept);
}

答案 4 :(得分:2)

您可以查看GSL(数字科学库)。有许多类似Matlab的函数,其中包括一维插值。

我现在正打电话,抱歉,无法提供链接。

答案 5 :(得分:2)

您是否知道Matlab Coder?它自动从Matlab代码生成c / c ++代码。如果你有这个作为你的Matlab包的一部分,你可以通过它运行interp1函数,看看Matlab吐出的内容。

答案 6 :(得分:2)

@ user1097111,你的代码存在一个bug,在函数findNearestNeighbourIndex中,它应该是if(newDist&gt; = 0&amp;&amp; newDist&lt; dist),而不是if(newDist&gt; 0&amp;&amp; newDist&lt; dist)。

答案 7 :(得分:1)

在fileexchange中查看lininterp1f。

答案 8 :(得分:0)

如果这有助于将来的某个人,那么这是一个没有临时数组且没有0错误的版本。

#include <iostream>
#include <vector>
#include <limits>
#include <cmath>


template<typename Real>
int nearestNeighbourIndex(std::vector<Real> &x, Real &value)
{
    Real dist = std::numeric_limits<Real>::max();
    Real newDist = dist;
    size_t idx = 0;

    for (size_t i = 0; i < x.size(); ++i) {
        newDist = std::abs(value - x[i]);
        if (newDist <= dist) {
            dist = newDist;
            idx = i;
        }
    }

    return idx;
}

template<typename Real>
std::vector<Real> interp1(std::vector<Real> &x, std::vector<Real> &y, std::vector<Real> &x_new)
{
    std::vector<Real> y_new;
    Real dx, dy, m, b;
    size_t x_max_idx = x.size() - 1;
    size_t x_new_size = x_new.size();

    y_new.reserve(x_new_size);

    for (size_t i = 0; i < x_new_size; ++i)
    {
        size_t idx = nearestNeighbourIndex(x, x_new[i]);

        if (x[idx] > x_new[i])
        {
            dx = idx > 0 ? (x[idx] - x[idx - 1]) : (x[idx + 1] - x[idx]);
            dy = idx > 0 ? (y[idx] - y[idx - 1]) : (y[idx + 1] - y[idx]);
        }
        else
        {
            dx = idx < x_max_idx ? (x[idx + 1] - x[idx]) : (x[idx] - x[idx - 1]);
            dy = idx < x_max_idx ? (y[idx + 1] - y[idx]) : (y[idx] - y[idx - 1]);
        }

        m = dy / dx;
        b = y[idx] - x[idx] * m;

        y_new.push_back(x_new[i] * m + b);
    }

    return y_new;
}

int main() {
    vector<float> x{1, 2, 3, 4, 5};
    vector<float> y{5, 6, 7, 8, 9};
    vector<float> newx{0, 5, 6.123, 12.123, 2, 4};

    auto res = interp1(x, y, newx);
    for (auto i: res)
        cout << i << " ";
    cout << endl;
}