我有一个2d数组,我转换为1d数组。在1d表示中,如何找到单元格的所有8个邻居,从而解决环绕?
这个背景是我有一个2D游戏板,我将其作为1d内存存储在内存中。我需要能够找到游戏板中所有8个相邻单元的存储位置。我遇到的问题是考虑边缘上的电路板环绕(特别是如果单元格位于2d数组的角落)。
例如,如果单元格位于右上角,则顶部邻居位于右下角等。
我在计算时知道了电路板尺寸。
编辑:提及我在MIPS组装中这样做可能是恰当的......
答案 0 :(得分:1)
您只需要一个可以将任意位置映射到数组中包含的位置的函数。
您必须分两步解决问题:
使用模运算符可以轻松完成包装,例如
struct pos { int x,y };
pos wrap(pos p)
{
pos p2 = p;
if (p.x >= WIDTH)
p.x %= WIDTH;
else if (p.x < 0)
p.x += WIDTH;
if (p.y >= HEIGHT)
... same thing
}
然后你将拥有一个肯定包含在数组中的位置,你需要将它映射为1d,这更容易:
int flatten(pos p)
{
return p.x*WIDTH + p.y;
}
所以你可以把它们结合起来:
int fpos = flatten(wrap({30,20}));
你已经完成了。
答案 1 :(得分:1)
这是python代码,但使用简单的1d平面列表的逻辑应该足够清晰:
def neighbors(i, w, h, mode=8):
"""Return a list of neighbors.
Works as like a 2d graph of 'w' width and 'h' height with boundaries.
Args:
i(int): 1d index
w(int): width of the graph.
h(int): height of the graph.
mode(int): 8 for eight directions (includes diagonals); else for
4 directions (top, down, left, right).
Returns:
list
"""
size = w * h
neighbors = []
if i - w >= 0:
neighbors.append(i - w) # north
if i % w != 0:
neighbors.append(i - 1) # west
if (i + 1) % w != 0:
neighbors.append(i + 1) # east
if i + w < size:
neighbors.append(i + w) # south
if mode == 8:
if ((i - w - 1) >= 0) and (i % w != 0):
neighbors.append(i - w - 1) # northwest
if ((i - w + 1) >= 0) and ((i + 1) % w != 0):
neighbors.append(i - w + 1) # northeast
if ((i + w - 1) < size) and (i % w != 0):
neighbors.append(i + w - 1) # southwest
if ((i + w + 1) < size) and ((i + 1) % w != 0):
neighbors.append(i + w + 1) # southeast
return neighbors
测试/打印它:
if __name__ == '__main__':
W = 3 # width
H = 3 # height
def show(start, neighbors):
"""Simple display of an 2d table.
Args:
start(int): initial position (shown as 'S')
neighbors(list): list of positions (draw as their values)
"""
for y in range(H):
print("|", end="")
for x in range(W):
i = y * W + x
if i == start:
c = " S|"
elif i in neighbors:
c = "%3d|" % i
else:
c = " .|"
print(c, end="")
print()
for i in range(W * H):
print()
n = neighbors(i, W, H)
print("neighbors(%d) of '%d':" % (len(n), i), n)
show(i, n)
结果:
neighbors(3) of '0': [1, 3, 4]
| S| 1| .|
| 3| 4| .|
| .| .| .|
neighbors(5) of '1': [0, 2, 4, 3, 5]
| 0| S| 2|
| 3| 4| 5|
| .| .| .|
neighbors(3) of '2': [1, 5, 4]
| .| 1| S|
| .| 4| 5|
| .| .| .|
neighbors(5) of '3': [0, 4, 6, 1, 7]
| 0| 1| .|
| S| 4| .|
| 6| 7| .|
neighbors(8) of '4': [1, 3, 5, 7, 0, 2, 6, 8]
| 0| 1| 2|
| 3| S| 5|
| 6| 7| 8|
neighbors(5) of '5': [2, 4, 8, 1, 7]
| .| 1| 2|
| .| 4| S|
| .| 7| 8|
neighbors(3) of '6': [3, 7, 4]
| .| .| .|
| 3| 4| .|
| S| 7| .|
neighbors(5) of '7': [4, 6, 8, 3, 5]
| .| .| .|
| 3| 4| 5|
| 6| S| 8|
neighbors(3) of '8': [5, 7, 4]
| .| .| .|
| .| 4| 5|
| .| 7| S|