使用timeit()和假设检验方法

时间:2012-02-19 23:27:48

标签: python performance benchmarking sl4a timeit

在比较Android上SL4A的较长(> 1行)代码段时,我使用timeit()作为准确的基准测试时遇到了一些问题。比较时间时,我的变化非常大。 (可能与android / dalvik vm分配cpu时间的方式有关吗?)。

无论如何,我写了一个脚本,它使用假设检验来分析大(~1000)次样本。这种方法有什么问题吗?

from math import sqrt
import timeit

#statistics stuff

mean = lambda x: sum(x) / float(len(x))

def stdev (mean, dataset):
    variance = ((x - mean)**2 for x in dataset)
    deviation = sqrt(sum(variance) / float(len(dataset) - 1))
    return deviation / sqrt(len(dataset))

def interval(mean, sampleDeviation, defaultZ = 1.57):
    margin = sampleDeviation * defaultZ
    return (mean - margin, mean + margin)

def testnull(dataset1, dataset2, defaultZ = 1.57):
    mean1, mean2 = mean(dataset1), mean(dataset2)
    sd1, sd2 = stdev(mean1, dataset1), stdev(mean2, dataset2)
    interval1, interval2 = interval(mean1, sd1, defaultZ), interval(mean2, sd2, defaultZ)
    inside = lambda x, y: y >= x[0] and y <= x[1]
    if inside(interval1, interval2[0]) or inside(interval1, interval2[1]):
        return True
    return False

#timer setup

t1 = timeit.Timer('sum(x)', 'x = (i for i in range(1000))')
t2 = timeit.Timer('sum(x)', 'x = list(range(1000))')

genData, listData = [], []

for i in range(10000):
    genData.append(t1.timeit())
    listData.append(t2.timeit())

# testing the interval
    print('The null hypothesis is {0}'.format(testnull(genData, listData)))

1 个答案:

答案 0 :(得分:2)

我认为这是明智的。你想要的是比较两个版本的代码的重叠置信区间。 Georges et al (2007)对您尝试使用的技术有完整的描述。